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Abstract

We present a theoretical study of the spread of multiple strains of malaria according

to within-host parasite dynamics. The disease transmission mechanism is modeled in

two parts. Transmission from the host to a mosquito depends upon the host's para-

site density and a transmission-to-vector probability function, while transmission from

mosquitoes to new hosts depends upon a general transmission parameter which de-

scribes the behavior of these vectors. Collaborators have provided data which describe

the density of parasites in the blood for two di�erent clones of rodent malaria over the

course of a typical infection; these data have been modi�ed to re�ect characteristics of

the human form of the disease. The transmission-to-vector probability function is based

on a half-saturation parameter which a�ects the overall shape of the transmission prob-

ability curves. By stochastically simulating the model over a range of half-saturation

and transmission parameters, we have found that there is large region of this parameter

space in which coinfections dominate the host population at equilibrium.
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1 Introduction

Malaria is a vector-borne infectious disease which is caused by protozoan parasites. Symp-

toms are characterized by high fever, chills, �u-like symptoms, and in many cases, death.

Malaria shares many characteristics with other protozoan parasites, which cause diseases

such as African trypanosomiasis and visceral leishmaniasis [32]. However, malaria is by far

the most prevalent of these diseases among humans. In 2002, it was estimated that 2.2 billion

people were exposed to the threat of the most dangerous species, Plasmodium falciparum

[35]. Researchers predict that this produced between 300 and 660 million clinical malaria

attacks, most of them in Africa and Southeast Asia. In addition to impacting human health,

malaria also negatively impacts economic growth, making it not only a result of poverty,

but also a possible contributor to poverty [17]. Given the human and economic costs of this

disease, there is a great need to better understand how it spreads through large populations

of human hosts.

In the following thesis, I will �rst present a brief survey of malaria pathogenesis (section

1.1), familiarize the reader with the mathematics of the classic endemic model (section 1.2.1),

describe some of the sophisticated general modeling methods available today (section 1.2.2),

and survey some of the recent malaria-speci�c models (section 1.2.3). Next, I will outline a

model for the transmission of malaria which is based explicitly on the within-host dynamics

of the disease. I will develop the model for a single strain infection (section 3), expand it to

include multistrain infections (section 4), and then prove that under reasonable conditions,

a coinfection of two or more strains, must become extinct (section 4.3). Since coinfections

are observed in nature, I will then develop a stochastic superinfection model, in which a host

can be infected with additional strains on di�erent days (section 5). The resulting numerical

experiments support the survival of coinfections. Lastly, I will summarize the opportunities

for further analysis (section 6), since the work presented here represents only a fraction of

the possible hypotheses which may be tested with simulations of the stochastic model.
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1.1 Malaria Pathogenesis

The life cycle of the malaria parasite is complex. The infection begins when a mosquito feeds

on a human host's blood. Contact from the mosquito salivary glands causes an intravenous

inoculation of sporozoites, the protozoan cells which are infect new hosts. They are quickly

transported to hepatocytes, the majority constituent of the liver. They incubate and multiply

in the liver for a median of eleven days [41], at which point the next phase of the parasite's

life cycle, an asexual merozoite or daughter cell, ruptures the host's hepatocytes (liver cells)

and enters the bloodstream. The merozoites invade erythrocytes (red blood cells), where

they begin the pathogenic phase of the disease. During this phase, they are ampli�ed to

high density in the host's blood [29].

During the pathogenic erythrocyte phase, P. falciparum is able to evade detection by

manipulating the antigens which coat the surface of the cell. The immune system has

di�culty recognizing the parasite's antigenic variations, and is therefore unable to quickly

dispose of it [6]. During the erythrocyte stage of the disease, the erythrocyte may adhere

to the vascular endothelium, the thin layer of cells on the inside of blood vessels. This

is thought to be one of the factors which contributes to mortality, along with the release

of a diverse set of toxins [5]. During reproduction and maturation in the erythrocytes, a

small proportion of the asexual merozoites convert to sexual cells which serve to inoculate

mosquitoes when they feed on the blood [28]. The anopheline mosquito serves as the vector

which transmits the disease to a new human host. The merozoites reproduce in the mid-gut

of the mosquito before they migrate to the salivary glands, thus completing the cycle [38].

Thus, the asexual parasites undergo a �puberty� stage in human hosts, where they mature

into sexual parasites, which then infect a mosquito.

There are modern drug therapies for treating malaria. These generally fall into three

categories, based on the core component of the drug: quinoline, antifolate, or artemisinin.

Quinine, an alkaloid originally derived from tree bark, is the oldest e�ective malaria treat-
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ment. It was discovered in cinchona trees found in Peru in the late seventeenth century

[19]. Quinine would later be used as a the most common treatment until the 1960s, at

which point other drugs such as chloroquinine became available. In recent years, multi-drug

resistance has revived its usefulness, and it is still in widespread use, though in combination

with other drugs [3]. Evidence suggests that the quinolines suppress malaria by inhibit-

ing the polymerization of a toxic heme called hemozoin that is released by the parasite,

thus slowing the process by which the asexual parasites mature, reproduce, and rupture

the erythrocyte [37]. Artemisinin is also believed to inhibit hemozoin or possibly target

other proteins in an infected cell, however its mechanism is completely di�erent. Research

suggests that artemisinin is activated by the high concentration of parasitic heme, causing

it to release free radicals which prevent polymerization [27]. Despite the variety of drug

treatments, however, the emergence of resistance determines the useful life of a particular

treatment, and therefore impacts the overall costs of controlling malaria.

One major di�culty concerning drug resistance is the con�ict between clinical and epi-

demiological outcomes. The mission of a doctor or clinician is to save the patient with any

available tools, however, if this is done improperly, it may accelerate the spread of drug

resistance. The application of drug pressure, which encourages the selection of resistant

parasites, is a key factor in promoting the emergence of resistance. Therefore, antimalarial

drugs must be administered under strict guidelines to minimize the factors which enhance re-

sistance, including poor compliance when administering multi-drug regimens, the use of poor

treatment or sub-therapeutic doses, or the overuse of treatments, especially when a diagnosis

of malaria has not been con�rmed in a lab. For these reasons, epidemiologists recommend

restricted use of massive drug administration, heavy use of post-treatment follow-up, and

synergistic use of partner drugs and alternative treatments [43].

Since it is di�cult to create e�ective malaria treatment policies on a case-by-case basis,

epidemiologists have urged the creation of centralized databases which will track clinical,

7



in vitro, and pharmacological data in order to create better malaria management policies

[33]. An e�ective treatment strategy would provide for both the treatment of patients while

preserving the e�cacy of today's antimalaria drugs. However, this goal has been elusive.

Today, the newest drug treatments, which are based on a compound called artemisinin, are

being used in combination with older drugs such as quinoline and antifolate to lengthen the

useful lifespan of artemisin [31].

It is clear that a fundamental understanding the mechanism by which malaria replicates

and transmits is essential to maintaining or improving the current state of malaria control.

By combining an understanding of the malaria mechanism with better surveillance and

rational treatment policies, it may be possible to reduce the enormous human and economic

costs of malaria.

1.2 A Review of Infectious Disease Models

Because of the potency of malaria, the emergence of drug-resistant strains, and the many

factors which in�uence the transmission and progression of malaria endemics, infectious

disease modeling provides a valuable tool for exploring new ways to control disease. However,

because the individual processes which comprise an infectious disease � such as the dynamics

of parasite replication in the host and the nature of contacts between hosts � occur over

large time and length scales, it is di�cult model the disease as a whole. Even the simplest

infectious disease is in�uenced by a stunning array of factors. It is therefore useful to study

infectious disease with the simplest relevant models in order to implement them easily, and

moreover, to elucidate their fundamental processes. Let us now brie�y survey of the �eld of

infectious disease modeling, in order to better place the forthcoming malaria model in the

proper context.

When surveying the collection of disease models, it is helpful to classify infection pro-

cesses according to three components: biological, behavioral, and environmental [18]. The
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biological component of infectiousness comprises the nature of the pathogen's life cycle, its

dynamics in the body of the host, its interaction with the host immune system, potency

and physical damage or mortality in the host, and susceptibility to drug treatments. The

behavioral component is de�ned on a much larger length scale, and consists primarily of

the contact patterns between hosts and vectors. Lastly, the environmental component of

infectiousness includes those components which determine transmission between hosts, or if

necessary, between hosts and vectors. For example, malaria requires a mosquito vector to

transmit between human hosts. Since mosquitoes thrive in wet environments, their popula-

tion is much larger during a rainy season. In some cases, pesticides in�uence the mosquito

populations as well. For several decades following the 1950s, the pesticide dichloro-diphenyl-

trichloroethane (DDT) was used as an e�ective means for controlling malaria by eradicating

large populations of mosquitoes. However, in recent years, the environmental damage of

DDT along with mosquito resistance has led to more �exible forms of disease management

[42]. For example, malaria can be prevented by using a mosquito net or bed-curtain, as this

reduces the number of interactions between a human host and potential mosquito vectors,

though e�cacy hovers around 17% [25]. In addition to the biological and behavioral compo-

nents of the disease, these environmental components may also impact the population-level

dynamics by in�uencing the transmission rate. To understand the propagation of infectious

diseases, an understanding of each component is necessary.

The product of an infectious disease model will be a description of how the infectious

disease propagates through a population, according to initial conditions and the parameters

which describe the biological, behavioral, and environmental properties of the disease. By

surveying the model predictions across di�erent parameters and initial conditions, we may

better understand the behavior of the model, and also evaluate its compatibility with our

observations.
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1.2.1 The Classic Endemic Model (SIR)

Many epidemiological models are based upon a compartmental model which distinguishes

among individuals according to their disease state. We will now explore the classic endemic

model, called the �SIR� model because it provides a useful starting point for understanding

the theory of infectious diseases.

The SIR model is perhaps the simplest example of an epidemiological compartment

model. The acronym SIR stands for the three classes of hosts, which include those who are

susceptible, infected, and recovered from the disease. Hethcote provides a useful review of

this model, which will now be brie�y summarized [22]. We may describe the model with the

following initial value problem.

dS
dt = µN − µS − β ISN S(0) = S0 ≥ 0

dI
dt = β ISN − γI − µI I(0) = I0 ≥ 0

dR
dt = γI − µR R(0) = R0 ≥ 0

N = S + I +R

(1)

The variables S, I, and R represent the populations of susceptible, infected, and recov-

ered hosts. This model includes balanced birth and death rates given by the in�ow of new-

borns into the susceptible class with a rate of µI and deaths in each class, at rates of µS, µI,

and µR. The parameter µ represents the number of births and deaths per unit time per per-

son, which gives a mean lifetime of 1
µ time units. We have set N = S+I+R in order to con-

serve population at a constant quantity, since this forces dSdt +dI
dt+

dR
dt = µN−µ(S+I+R) = 0.

Note that births and deaths enable this system to represent an endemic disease, in which

the infection is able to sustain itself inde�nitely. In this case, the persistance of infection

is thanks to the supply of new susceptible individuals by birth. Without birth and death

processes, eventually all hosts would contract and recover from the disease. This is called

an epidemic, to distinguish it from an endemic. The assumption that population size is
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constant is a strong one; a �uctuating population may have a profound e�ect on malaria

transmission. For example, in a growing population, births may provide an ever-increasing

pool of new susceptible hosts, while a shrinking population may force the disease to become

extinct when the susceptible population becomes too small to sustain it.

The transmission parameter β is the contact rate, de�ned as the number of disease-

transmitting contacts per unit time per infected host. The number of new infections per

unit time is equal to the total number of disease-transmitting contacts βI multiplied by the

probability that the recipient is susceptible, which must be S
N in a well-mixed population.

The recovery parameter γ represents the number of recoveries per unit time, per person.

This means that 1
γ is the expected duration of the disease, implicitly assuming an exponential

waiting time e−γt for recovery. The SIR model therefore captures behavioral and biological

components of the disease in β because it includes the rate at which hosts interact with

each other, scaled by the probability that an infected host will transmit the disease to a

susceptible one. Additionally, γ completes the simple biological picture of the disease by

specifying its infectious duration. We have summarized the properties of our model, along

with a collection of necessary assumptions in the following list.

• The population of N hosts is well-mixed, meaning that it is equally probable for any

two hosts to come into contact.

• We assume that the population is su�ciently large that the size of each class can be

treated as a continuous variable.

• The product of the rate of contacts between all hosts and the probability of disease

transmission if one host is infected is β.

• Birth and death are exactly balanced, and happen at a rate µ � which implies an

expected lifespan of 1
µ � such that the exponential waiting time for a birth or death

event is e−µt.
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• The expected duration of the disease is 1
γ time units.

• There is no additional migration into the system or out of the system.

• The disease is not fatal, and hence only natural death depletes the number of infected

hosts.

The behavior of the classic SIR model can be classi�ed in terms of the basic reproduction

ratio R0. The basic reproduction ratio is the average number of secondary infections created

when a single infected host is placed in an entirely susceptible population. Intuition suggests

that if R0 < 1 then the infection will not be able to grow in our population. If we consider

Equation 1 we might guess that R0 = β
γ+µ because this is the average number of disease-

transmitting contacts by a single individual over the death-adjusted duration of the disease.

However, we can show that our intuition is correct by describing the equilibria and local

stability of the system. We will show that whenever R0 = β
γ+µ ≤ 1 the system will approach

a disease-free state, and whenever R0 = β
γ+µ > 1 the infection will persist. In considering

the local stability of the system, we are neglecting the possibilities of limit cycles which

would require more elaborate solution methods.

First we normalize our ordinary di�erential equations according to S̄ = S/N , Ī = I/N ,

and N = 1, which is equivalent to setting S̄ + Ī + R̄ = 1, where S̄, Ī, and R̄ represent

proportions of the total population which are susceptible, infected, and recovered. We

ignore the recovered class, which can be calculated from the susceptible and infected classes

thanks to conservation of population. The normalized equations are as follows.

dS̄
dt = µ− (βĪ + µ)S̄

dĪ
dt = βS̄Ī − (µ+ γ)Ī

(2)
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If we set these equal to zero, we may solve for two equilibria, (S∞, I∞).

Ī∞ = 0 and S̄∞ = 1

Ī∞ = µ
µ+γ (1− µ+γ

β ) and S̄∞ = µ+γ
β

(3)

Note that these equilibria are only positive, and hence physical, when µ + γ < β. If

we linearize the system about either of these equilibria, we may determine the asymptotic

stability properties from the eigenvalues of the resulting coe�cient matrix. We set x =

S̄ − S̄∞ and y = Ī − Ī∞. Recognizing that at equilibrium,dS̄dt = dĪ
dt = 0 we may linearize our

system by taking the Taylor series expansion of x and y. This yields the following linear

system.

 x′

y′

 =

 −βĪ∞ − µ −βS̄∞

βĪ∞ βS̄∞ − µ− γ


 x

y

 (4)

If we substitute the disease-free equilibrium condition, Ī∞ = 0, we �nd that the eigen-

values are β − γ − µ and −µ. For an asymptotically stable system, the solution to our

linearization must tend to zero as t→∞; this happens if and only if the eigenvalues have a

negative real part. Applying this condition allows us to conclude that β
γ+µ < 1 implies that

disease-free equilibrium will be stable, while it will be asymptotically unstable if β
γ+µ > 1.

Instead of showing the rather lengthy eigenvalues for the endemic equilibrium state � the

one with a nonzero number of diseased hosts � it is su�cient to show that the coe�cient

matrix has a positive determinant and a negative trace. The trace of this matrix is − (β+2γ)
γ+µ

and the determinant is µ(β − γ − µ), which must always be positive if we assume that

the disease is shorter than the average lifespan. Therefore, the endemic equilibrium is

asymptotically stable as long as β > µ+ γ.

Note that since S̄∞ = µ+γ
β < 1 is necessary for an endemic equilibrium to be non-

negative, and hence realistic, it follows that β
γ+µ > 1 and the disease-free equilibrium must
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be unstable. In this case, intuition suggests that if β
γ+µ > 1 then the system will approach

the endemic equilibrium. While a proof is beyond the scope of this report, it has been shown

that this is true for the more general SEIR model, and in fact, the endemic equilibrium is

globally asymptotically stable[39].

To summarize, we have surveyed the SIR model, and shown that the invasion of an

infection in a disease-free population will occur when the basic reproduction number, R0 =

β
γ+µ , is greater than unity. We have thus classi�ed the two possible behaviors of this system

in terms of its physical parameters. Even when we cannot estimate these parameters, there

is much to learn from understanding the behavior of a disease which follows this model.

1.2.2 Sophisticated Model Design

A preponderance of biological evidence has led epidemiologists to conclude that most in-

fectious are more complicated than the simple SIR model suggests. Rigorous statistical

methods and careful observation of the progression of infectious diseases in nature has led

to ever more nuanced infectious disease models, which capture the complexity of the biolog-

ical, behavioral, and environmental components of infectiousness.

Adding compartments to the model is one way to better mimic the disease. For example,

the SEIRS model incorporates an exposed state in which an individual host has contracted

the disease but is not yet infectious. It also returns recovered hosts into the susceptible

state after a certain time, emulating the temporary immunity which is observed in many

diseases [21]. In models such as these, the time spent in exposed, infectious, and recovered

states may have a profound e�ect on the dynamics of the model. We may further modify

the compartmental model by including mortality which is caused by the disease, and must

hamper its infectiousness by reducing the population of infected hosts. Some have also

considered models with variable infectivity according to the population size [40]. This is

critical, as it is closely related to the idea of herd immunity, which may play an extensive
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role in any infectious disease.

Many important infectious diseases � namely Malaria, but also yellow fever, the West

Nile virus, and dengue � require transmission between hosts by a vector such as a mosquito.

Mathematical models for these diseases must also consider both the biology and behavior of

the vector as well as the host. It is oftentimes possible to treat the vector population with

set of di�erential equations which resemble the same human host compartments [10].

Epidemiologists may also incorporate more complex behavioral and environmental com-

ponents into their models. For example, they may tweak the incidence rates of births,

deaths, and immigration [21]. Another e�ective modeling technique involves the strati�ca-

tion of hosts by age, since di�erent age cohorts have di�erent levels of infectiousness and

mortality when infected with the same disease [23]. The mixing e�ects of a population can

be explored by using spatially explicit models [24]. In many cases, such models predict

a richer collection of di�erent disease behaviors [30]. In the case of vector-borne diseases,

seasonal forcing e�ects and climate changes may a�ect the vector, and change the overall

disease dynamics [2, 36].

Given an apt model, it is possible to study the impact of treatments on the spread of

the disease. This can lead modelers to propose optimal treatments, especially when the

optimal treatment pattern is counter-intuitive. Research into in�uenza models provides a

useful example. A large-scale epidemic simulation based on the basic reproduction number

of past pandemics was used to describe the progression of after the initial outbreak in either

the UK and US. This revealed that even intense border control would only delay the onset of

the pandemic, while rapid treatment and household quarantine provide the greatest impact

on transmission [11]. In the case of severe acute respiratory syndrome (SARS), researchers

have shown that the success of disease control measures such as isolation and contact tracing

depends on both the inherent transmissibility of the infectious agent and the proportion of

transmission which occurs before the onset of symptoms. It is necessary to determine this
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proportion in order to e�ectively manage the outbreak [12]. These two examples are only a

small sample of the possible treatment strategies which may be elucidated from infectious

disease models.

1.2.3 A Survey of Malaria Models

We have previously discussed infectious disease models generally, however, it is important to

consider each disease speci�cally, since every infectious disease may have unique character-

istics. Malaria is a distinct infectious disease for many reasons, namely its transmission via

mosquitoes, two-stage parasite life-cycle, and the proliferation of several di�erent strains.

Because of its relative complexity modelers have explored the behavior of the malaria en-

demic in a number of ways. Some of the most recent models explore the more complicated

aspects of the disease. Animal models and models from other diseases are also used to draw

conclusions about malaria, since direct testing of humans would often be unethical.

A primary area of concern is immunity. In one example, modelers created age-strati�ed

immunity functions which depend upon the frequency of infection [44]. These functions

controlled the level of parasites in an infective host, thereby impacting transmission and

changing the behavior of the model. Another model looks more closely at the immune

system response, seeking to emulate the antigenic variation which the parasite uses during

the erythrocyte phase [8]. Additionally, some modelers have created models which probe

the e�ects of cross-immunity between di�erent strains [15].

Finally, some modelers have attempted more comprehensive models, as seen in a recent

model which simulates the parasite densities according to experiments in which neurosyphilis

patients received therapeutic P. falciparum infections. This particular model has been

designed to capture as many biologically relevant features as possible, including seasonality,

age-strati�ed vector contact rates, and the e�ects of heterogeneous transmission rates [34].
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2 Objectives and Hypothesis

We model a population of human hosts who contract and transmit malaria. We assume

that transmission between hosts depends upon the density of malaria parasites in the blood,

commonly called the within-host dynamics of the disease. This model is based on exper-

imental data which describe the daily parasite densities for mice infected with up to two

strains of malaria. We translate these data to match the features of the disease in a human

host, and then simulate the spread of these strains in a population of human hosts. The

model tests the hypothesis that the speci�c shape of the within-host dynamics, represented

as the parasite density with respect to the age-of-infection, will have a profound e�ect on

the dynamics of the disease. By surveying the spread of the disease across di�erent shapes

and levels transmission, we can draw conclusions about the way in which the spread of the

disease depends on the shape of the within-host dynamics.
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3 The Single-Strain Model

In order to model the transmission of malaria based on the within-host dynamics, we begin

with the simplest possible model, which consists of two mechanisms. The host transmits a

malaria parasite to a vector � in this case, a mosquito � and the vector transmits the disease

to a new host. To ensure that we distinguish between diseased and recovered hosts, we

assumed that the parasite density is zero after (m+ 1) days, after which time the individual

is permanently resistant to the disease. In practice, the parasite density may never reach

zero; it may persist inde�nitely in small amounts. In other cases, individuals may lose their

resistance to the disease over time, e�ectively becoming naive again. The simple model

discards these cases in favor of simplicity. We will choose m based upon the point at which

the disease is at very low levels in the blood.

For each individual expressing the disease, the probability f of transmitting the disease to

the vector in a single interaction, a mosquito bite, is a function which depends on the parasite

density at day a, denoted p(a). The transmission rate β is a factor which encompasses the

remaining aspects which are implicated in transmission from the vector to a new host,

including:

• the rate at which the vector interacts with the hosts

• the probability that the vector passes the disease to a new host in a single interaction

• the vector survival rate

• the relative number of humans and vectors

The model e�ectively separates the two processes which cause the disease to propagate:

transmission to the vector and infection of a new host. The former depends upon experi-

mental data which describe the parasite density and estimates of the transmission-to-vector

probability function f , while the latter is subsumed into the vector-to-host transmission rate
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β. We assume that β is independent of the age of infection, and that the population is well-

mixed, or absent of any spatial heterogeneity which might make β vary. The transmission

parameter β and the two parameters which we will use to de�ne the transmission-to-vector

probability function will be di�cult to estimate. For that reason, we will later study the way

the model behaves across a broad range of such parameter values, to consider all possible

natural disease outcomes.

For the single-strain model there are three classes of hosts: those who are naive to the

disease, those with an active infection, and those who have recovered. As the infection runs

its course, there is a per-day survival rate of s = S
1

(m+1) where S is the overall survival

rate for the disease. This implicitly assumes that there is an equal probability of mortality

for all days of the infection. Hosts in the naive and recovered states are also subject to

a natural per-day survival rate of sn. This assumes an expected lifespan of 1/sn years.

In order to conserve the population size, hosts who die from either the disease or natural

causes are �recycled� to the naive class, thus emulating birth and death while assuming

a constant population. This induces a natural turn-over e�ect which causes the disease

to reach an equilibrium instead of becoming extinct. This is somewhat unrealistic, since

natural populations grow and shrink. Our model assumes that there is no age-strati�cation,

and that mortality and transmission do not vary throughout any groups within the host

population. Many of our assumptions trade accuracy for simplicity in order to focus on our

fundamental hypothesis, that the shape of the curve which describes the transmission-to-

vector probability from parasite densities will have an e�ect on the steady-state outcomes

of the disease.

3.1 The Single-Strain Equations

We will �rst consider a model with only one strain of malaria, outlined in Figure 1. The

following equations represent such a model, according to the assumptions and de�nitions
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given earlier in this section. At time t, the variables y(a, t) represent the number of hosts with

an a-day-old infection while w(t) and r(t) represent the naive and recovered populations,

respectively.

w(t+ 1) = w(t)− β w(t)
m∑
a=0

y(a, t) f [p(a)]

+(1− sn) r(t) + (1− s)
m∑
a=0

y(a, t) (5)

y(0, t+ 1) = β w(t)
m∑
a=0

y(a, t) f [p(a)] (6)

y(a, t+ 1) = s y(a− 1, t) ∀ a = 1, . . . ,m (7)

r(t+ 1) = sn r(t) + s y(m, t) (8)

Equation 6 represents the new, zero-day-old infections. New infections are the product

of three factors. The number of individuals with an a-day-old infection multiplied by the

per-person probability f of passing the disease on to the vectors gives the total number

of vectors likely to have acquired the disease from those individuals. For example, if the

per-person probability of passing the disease to a vector is 50%, and there are 10 individuals

in the infected group, then there will be a population of 5 vectors carrying the disease.

After summing these terms over all infected groups (each with varying days of infection), we

multiply by the per-vector transmission rate β in order to �nd the number of infected hosts.

If the rate is 0.2 then there will be 1 newly infected individual in our example. This scheme

approximates the way in which vectors spread the disease, without explicitly modeling them.
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Figure 1: This diagram shows the migration of hosts from the naive state, through diseased
states - enumerated by the number of days of infection - to a recovered state. Hosts who do
not survive during the infection or after recovery are recycled to the naive state.

Equation 7 represents the course of infection, in which hosts with an a-day-old infection

on day t have an (a+1)-day-old infection on day t+1 with probability s, the disease survival

rate. The variables y(a, t) for each a from 1 to m re�ect transient states; hosts can only

have an a-day-old infection for one day. The naive and recovered variables, however, retain

hosts. Equation 8 de�nes r(t), the recovered class, which receives hosts who survive the

�nal day of infection and retains hosts from the previous time-step with a probability equal

to the background survival probability, sn. Finally, the naive class w(t) changes according

to Equation 5. It retains the naive hosts from the previous time-step and loses some to

infection. The �nal two terms serve to balance the system and conserve the size of the

population. The �rst term replaces those who were lost to the natural survival rate in the

recovered class, while the second replaces those who were killed by the disease.

3.2 The Probability of Transmission to a Vector

The function f(x) describes the probability that the host with a parasite density of x viruses

per microliter of blood will transmit the disease to a vector in a single interaction, such as

a mosquito bite. This function, given by equation 9, takes two parameters: q, the shape
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parameter and c, the half-saturation density.

f(x) =
xq

cq + xq
(9)

The shape parameter determines the slope and �sharpness� of the probability function,

while the half-saturation density is the parasite density which corresponds to a probability

of 1
2 . Figure 2 shows an example of the range of possible probability functions which can

be achieved with only two parameters. This function is vital to the behavior of the model

because it translates the parasite densities p(a) into the probabilities of infecting a mosquito

during a single interaction during the a-th day of the infection. We have hypothesized that

the shape of the parasite density curves with respect to time a�ects the dynamics of the

disease. Therefore, p(a) links our model to the biology of the infection. Section 5 and

Appendix A describe the experimental data for p(a), which were provided by collaborators.

Given the �exibility of this function, it has the power to reshape the transmission re-

sponse in a number of ways. A cuto� which is small relative to the parasite density will

ensure that transmission occurs in almost all cases, while a high cuto� ensures that transmis-

sion is incredibly rare. Since the fundamental purpose of this study is to draw conclusions

about the spread of malaria in large populations from the shape of the function which tracks

parasite density with time, it is important to choose these parameters wisely. Otherwise,

the heavy-handedness of this function will obscure their fundamental shape, and the model

will degenerate into a simpler one, in which the probability of transmission is near unity or

zero for a certain duration of the course-of-infection.
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Figure 2: A depiction of di�erent probability curves for the function f . Curves which
approach 1 at very large parasite densities (the viral load) have power parameters (q) which
are less than 1. Curves which approach 1 at lower parasite densities have shape parameters
(q) which are greater than 1. The half-saturation (c) is 1000, the parasite density for which
each function returns a probability of 1

2 .

3.3 Single-Strain Equilibrium

Now that we have outlined the single-strain equations, we would like to describe the disease

patterns at equilibrium. We can do this by looking for stationary solutions to the equations.

The following shows the re-written equations, with no reference to time.

w̄ = w̄ − ȳ(0) + r̄(1− sn) + (1− s)
m∑
a=0

ȳ(a)

ȳ(0) = β w̄
m∑
a=0

ȳ(a) f [p(a)]

ȳ(a) = s ȳ(a− 1) ∀ a = 1, . . . ,m

r̄ = sn r̄ + s ȳ(m)

23



To solve the equations, we �rst eliminate all ȳ(a) variables for a > 0. We may then solve

for a trivial equilibrium by factoring, to get 0 = ȳ(0)(1 − βw̄
∑m

a=0 s
af [p(a)]), the disease-

free equilibrium. To solve for the remaining diseased equilibrium we will rewrite each of

the above equations. Since the system conserves population, the total population size N is

determined by the initial conditions.

w̄ = [β
m∑
a=0

sa f [p(a)]]−1 (10)

ȳ(a) = saȳ(0) (11)

r̄ =
s(m+1)

(1− sn)
ȳ(0) (12)

N = w̄ + ȳ(0)[
s(m+1)

(1− sn)
+

m∑
a=0

sa] (13)

Since population is conserved, the number of infected and recovered hosts will depend on

the population size. These three equations ensure that the system is properly constrained,

and provided that w̄ < N , the system will have a unique positive stationary solution. If

β = 0, then the system cannot create new infections, rendering it degenerate. In this case,

Equations 10-13 will not apply due to division by zero. With no infection rate, the stationary

solution would have no active infections, a naive population given by the initial conditions,

and a recovered population equal to the number of initially infected hosts. This equilibrium

is unstable; a single new infection is enough to force the system to gravitate towards a

di�erent steady-state.
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4 The Multistrain Model

Given the single-strain model, we would like to expand it to include an arbitrary number

of strains. This model will include both coinfections and strain immunity history. Hosts

with a coinfection can be infected with a set of strains z ⊆ Z, instead of just a single strain.

Each strain is distinguished by its parasite density, which is denoted pi,z(a) for the ath day

of infection with strain i ∈ z ⊆ Z where Z is the set of all strains and z is a subset of

strains which constitute a coinfection.1 If there is only one strain in z then we call it a single

infection. In this section we will assume that all coinfections are simultaneous; that is, a

host can only have a coinfection if it has received both strains from another infecting host.

It is important to distinguish between the parasite densities not only between single strains,

but also among di�erent coinfections, because it is likely that multiple strains will interact

which each other within the host. 2

We assume that after a host has recovered from a particular strain, it can no longer

become re-infected with it. To include such immunity history, hosts who have recovered

from a set w ⊆ Z may carry active infections with another set z ⊆ Z, so long as these

sets are disjoint (that is, z ⊆ wc). We will use yz,w(a, t) to denote the population of hosts

recovered from strain set w but infected for a days with strain set z at time t. We de�ne

rz(t) as the hosts who have recovered from strains z ⊆ Z. For example, if Z = {f, g, h, i}

the set of hosts naive to all strains is r∅(t) and those who have recovered from strains {g, i}

but are still naive to the complement of this set {f, h} are denoted by r{g,i}(t). This ensures

that hosts who have recovered from some strains may still be infected by the others. In

1We will use set notation to describe the collection of strains which infect the members of each class of
hosts. In set notation, x ∈ Z means �x is an element of Z� and is used to describe individual strains in the
set of all possible strains, Z. The set z\x represents the set of z minus those elements in x. The expression
z ⊆ Z means �z is a subset of Z� and represents any collection of strains in the set Z including the absence
of any strains (the null set, ∅) or all possible strains, Z. The expression z ⊂ Z is identical, but does not allow
z to contain every strain in Z. If we take our entire space of strains to be Z, then the term �x complement�
or xc is equal to Z\x.

2In section 4.3 we will show that coinfections will vanish if the viral loads and survivability are the same
across all coinfections.
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addition to these de�nitions for z and w, we will also denote a host's full complement of

strains, of which the host may only transmit a subset, with the letter x where z ⊆ x.

We will distinguish between di�erent survival rates for infection with each set of strains,

with sz(a) representing the per-day survival rate for an individual with an a-day-old infection

of strain set z ⊆ Z. Including dependence upon the age-of-infection in the survival rates will

allow us to model the mortality of each course of infection more accurately. For simplicity,

the transmission parameter β is independent of time. However, in future work it may be

wise to extend the model by allowing β to �uctuate, speci�cally with seasonal �uctuations

during which mosquito populations � and hence transmission � rise and fall.

The model is not fully general because it will only propagate coinfections which originate

from the same host - two hosts with di�erent strains cannot infect a new host with both.

This means that the course of infection must begin with coinfected hosts, otherwise they

will never emerge on their own. In some cases, this assumption may be reasonable, since the

probability of the same vector acquiring the disease from separate hosts could be remote if

the population of vectors is much larger than the population of hosts. This limitation also

provides an opportunity to study the way in which di�erent values for the transmission rate

β a�ect the relative populations of hosts with single- and multiple-strain infections.

4.1 Equations for the Multistrain Model

The following equations describe the multistrain model with simultaneous-only coinfections

and strain-speci�c immunity history, but no cross-immunity. The sets are x, w, and z are

de�ned in the previous section. The v index is used to account for all hosts with active

infections x, because they may have recovered from any v ⊆ xc.
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yz,w(0, t+ 1) = β rw(t)
∑
x⊇z

∑
v⊆xc

m∑
a=0

yx,v(a, t) Φx,z,w(a) ∀z 6= ∅, ∀w ⊆ zc (14)

yz,w(a, t+ 1) = sz(a) yz,w(a− 1, t) ∀ a ∈ {1, . . . ,m} ∀z 6= ∅, ∀w ⊆ zc (15)

rw(t+ 1) = sn rw(t) +
∑
z⊆w\∅

sz(m+ 1) yz,w\z(m, t) ∀w ⊆ Z

−β rw(t)
∑
z⊆wc

∑
x⊇z

∑
v⊆xc

m∑
a=0

yx,v(a, t) Φx,z,w(a)

+δw∅[(1− sn)
∑
x 6=∅

rx(t) +
∑
x 6=∅

(1− sx(t))
∑
v⊆xc

m∑
a=0

yx,v(a, t)] (16)

where Φx,z,w(a) =
∏
i∈z

f(pi,x(a))
∏

j∈x\(z∪w)

[1− f(pj,x(a))]

These equations are composed of the same elements as the single-strain equations. Equa-

tion 14 describes hosts with active infections z who have previously recovered from w, draw-

ing from the corresponding recovered population, rw. This class can become infected with z

by any host with an active infection x which includes z (x ⊇ z), any immunity to set v such

that v ⊆ xc, and any age-of-infection a ∈ 0, ...,m, hence the triple summation. Equation

15 describes the course-of-infection for each active infection z in hosts recovered from w.

Lastly, equation 16 describes the states of recovered individuals. This includes four terms,

the last of which (preceded by δw∅) is described in section 4.1. The �rst term is used to

retain recovered hosts from the previous step. The second term adds hosts who have sur-

vived infections with z and previously recovered from infections with w\z. The third term

subtracts hosts who have recovered from w, but received a new infection with z. The hosts

in rw can become infected with any z ⊆ wc by any host with active infection x ⊇ z, with

any immunity to set v ⊆ xc, and any age of infection a ∈ 0, ...,m.
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The Probability Function Φ In the multistrain equations, Φx,z,w(a) represents the prob-

ability that an individual infected with strain set x transmits set z and fails to transmit the

set x\(z ∪ w) to a vector during a single interaction (note that z ⊆ x by our formulation).

This probability must be independent of set w because the function Φx,z,w(a) will always

be used to transmit new infections to the recovered class rw. Since this class has recovered

from w and has permanent immunity, its probability of becoming infected with z does not

depend upon whether w is transmitted. Therefore, w must be omitted from the strains

which fail to transmit � x\(z ∪w) � and cannot be present in the set of strains z which are

transmitted, because z ⊆ wc. This function allows one to compute the probability that a

group of hosts passes a subset of its active strains to new hosts who may already be immune

to some of these strains.

Conservation of Population In order to conserve population, equation 16 includes the

following term:

δw∅[(1− sn)
∑

x 6=∅ rx(t) +
∑

x 6=∅(1− sx(t))
∑

v⊆xc

∑m
a=0 yx,v(a, t)]

This term recycles hosts who have died from infection or natural causes into the naive class,

r∅. The leading factor is a Kronecker delta, which is equal to 1 when z = ∅ and is equal

to 0 when z 6= ∅. This allows one to include the �recycling term� for the equation which

describes r∅.

Creating a Time Series From the Di�erence Equations The di�erence equations in

4.1 can be used to track the spread of the disease. There are some practical concerns which

make them somewhat unwieldy, however. If we imagine a system in which transmission is

high or the amplitude of population oscillations is large, then it is possible for the population

of naive hosts to become negative. This nonphysical result is due to the fact that each
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strain of the disease blindly draws new hosts from the naive population during each time

step, without regard to infections by the other strains. Without exploring new methods for

constraining the di�erence equations, the best way to

4.2 The Linear Multistrain Model

In this section, we will consider a simpli�ed linear version of this system. Section 4.1 outlines

the nonlinear system with a limited but conserved population. We can remove this non-

linearity if we investigate the behavior of the system in which a new set of infections has

just been introduced to a naive population. We make the following assumptions.

• The number of infections is small relative to the overall population.

• The population of hosts is entirely naive, and the number of naive individuals is

constant: r∅ = P . It is not depleted by new infections.

• It follows that no recovered populations exist and all active infections have an empty

infection history: rw = 0 ∀w 6= ∅ and yz,w(0) = 0 ∀w 6= ∅.

In this case, the new infections are linear in the number of current infections of each type.

Arranging these equations into a matrix equation will furnish eigenvalues which will be equal

to the initial velocity or initial growth rate of each strain. The equations are as follows.

yz,w(0, t+ 1) = β(t) rw(t)
∑
x⊇z

∑
v⊆xc

m∑
a=0

yx,v(a, t) Φx,z,w(a) ∀z 6= ∅, ∀w ⊆ zc

yz,w(a, t+ 1) = sz(a) yz,w(a− 1, t) ∀ a ∈ {1, . . . ,m} ∀z 6= ∅, ∀w ⊆ zc

If we rewrite these as a matrix equation, the resulting physical eigenvectors would rep-

resent the initial relative populations of each yz,w(a). The eigenvalues therefore correspond

to the rate at which each type of new infection grows linearly.
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4.2.1 A Simple Example

To illustrate the relationship between eigenvalues and initial velocity, consider a two-strain

system with three days of infection. Written in a matrix, this system will have the following

form: Y (t+1) = M×Y (t). For simplicity, there are no infection history indices, no variables

referring to individuals who recovered from a previous infection, and a uniform mortality

rate s. The strains are numbered �1� and �2� respectively. Note that this matrix can be

simpli�ed into block form. If we extract the dominant eigenvalue from the submatrices

along the diagonal, we are left with the growth rate for the initially-infected hosts of that

type. This growth rate will depend on β and will serve as a criteria for the invasion of the

strain into a naive population. Any eigenvalue which is greater than one will grow in the

population. Otherwise the strain will fail to invade.

M =



Φ1,1(0) Φ1,1(1) Φ1,1(2) 0 0 0 Φ{1,2},1(0) Φ{1,2},1(1) Φ{1,2},1(2)

s 0 0 0 0 0 0 0 0

0 s 0 0 0 0 0 0 0

0 0 0 Φ2,2(0) Φ2,2(1) Φ2,2(2) Φ{1,2},2(0) Φ{1,2},2(1) Φ{1,2},2(2)

0 0 0 s 0 0 0 0 0

0 0 0 0 s 0 0 0 0

0 0 0 0 0 0 Φ{1,2},{1,2}(0) Φ{1,2},{1,2}(1) Φ{1,2},{1,2}(2)

0 0 0 0 0 0 s 0 0

0 0 0 0 0 0 0 s 0



Y (t) =
[

y1(0, t) y1(1, t) y1(2, t) y2(0, t) y2(1, t) y2(2, t) y{1,2}(0, t) y{1,2}(1, t) y{1,2}(2, t)
]

4.2.2 When Is the System Linear?

This analysis will only apply as long as the naive population is signi�cantly larger than the

number of infected hosts. When this is true, new infections do not signi�cantly reduce the

naive population and therefore do not noticeably a�ect the rate of new infections. In this

case, the size of the system is important because we can only introduce integer numbers

of infected hosts for physical reasons. Moreover, the smaller the system, the smaller the
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window of time in which this assumption is valid.

The higher the population ceiling, the longer the system will seem linear, since nonlin-

earities become most apparent when the number of infected and recovered hosts is a large

proportion of the overall population. At the very least, we expect the system to be linear

at the �rst instant of new infections. It will also seem linear during the initial phase of

infection, when all infections are increasing in a mostly naive population.

4.3 Without Interactions, Coinfections Vanish

In this section, we will show that coinfections must eventually become extinct if we assume

that the parasite densities are the same for every strain, regardless of whether or not it is

a member of a coinfection, and that the survivability of a coinfection is not higher than

infection by some single strain. That is, we de�ne pi(a) = pi,z(x) ∀z ⊆ Z. Now consider the

largest possible coinfection, which contains every strain in Z. We will treat transmission

probability independent of time and simplify the equation further by including survival-rate

terms.3 New coinfections with this entire set will follow the following form.

yZ,∅(0, t+ 1) = β r∅(t)
m∑
a=0

yZ,∅(a, t) ΦZ,Z,∅(a)

yZ,∅(0, t+ 1) = β r∅(t) yZ,∅(0, t)
m∑
a=0

sz(a) ΦZ,Z,∅(a)

The equation for the largest coinfection is di�erent than smaller coinfections and single

infections because it has only one term. This is a consequence of the fact that the largest

simultaneous coinfection can only arise in completely naive hosts. At steady-state, this

3Here we de�ne sx(0) = 1 in order to keep make these equations more readable; this allows us to remove
references to yz,w(a) for a > 0. The survival rate is de�ned physically as sx(a) ∀a ∈ 1, ..., am + 1, the
probability of surviving from the ath day of infection to the following day. It follows that sx(am + 1) is the
probability of surviving the �nal day of infection, to become a recovered host.
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equation gives a condition involving the steady state of r∅, shown below.

0 = yZ,∅(0) [1− β r∅
m∑
a=0

sz(a) ΦZ,Z,∅(a)]

This implies that either coinfections do not exist at steady state, that is yZ,∅(0) = 0, or

r∅ = [β
∑m

a=0 sz(a) ΦZ,Z,∅(a)]−1. This steady-state condition ensures that pool of completely

naive hosts is large enough so that the coinfection will not decrease. Now consider the

equation for one of the single-strain infections z1 ⊆ Z which were formerly naive to all

strains. Thus z1 is a singleton and w = ∅. In the following equations, we substitute our

steady-state r∅ condition.

yz1,∅(0, t+ 1) = β r∅(t)
∑
x⊇z1

∑
v⊆xc

m∑
a=0

yx,v(a, t) Φx,z1,∅(a)

yz1,∅(0, t+ 1) =

∑
x⊇z1

∑
v⊆xc

∑m
a=0 yx,v(a, t) Φx,z1,∅(a)∑m

a=0 sZ(a) ΦZ,Z,∅(a)

yz1,∅(0, t+ 1) =
∑m

a=0 yz1,∅(a, t) Φx,z1,∅(a)∑m
a=0 sZ(a) ΦZ,Z,∅(a)

+

∑
x⊇z1,x 6=z1

∑
v⊆xc

∑m
a=0 yx,v(a, t) Φx,z1,∅(a)∑m

a=0 sZ(a) ΦZ,Z,∅(a)

yz1,∅(0, t+ 1) =
yz1,∅(0, t)

∑m
a=0 sz1(a) Φz1,z1,∅(a)∑m

a=0 sZ(a) ΦZ,Z,∅(a)

+

∑
x⊇z1,x 6=z1

∑
v⊆xc

∑m
a=0 yx,v(a, t) Φx,z1,∅(a)∑m

a=0 sZ(a) ΦZ,Z,∅(a)
(17)

Equation 17 expands the summation over x into two parts, when x = z1 and all other

cases, x 6= z1. The �rst term represents the new z1 infections which are caused by other

z1 infections. Coinfections are considered in the second term, which must be nonnegative

because live infections cannot inhibit new infections in any way; moreover, each factor is

nonnegative. Let us now assume that the coinfection with Z cannot be more survivable

than coinfection with z1. That is, sz1(a) ≤ sZ(a) ∀a. With each day of infection, individuals

infected with every strain are not less likely to die than those with only one strain, z1.

32



This is reasonable, as it assumes that the strains do not inhibit each other or reduce their

individual potency.

Now consider the relationship between Φz1,z1,∅ and ΦZ,Z,∅. Assume that pz1,Z(a) =

pz1(a) ∀z ∈ Z, ∀a, that the viral load of z1is the same if it is in the largest coinfection Z or

as a singleton. This means we can write both probabilities as follows

Φz1,z1,∅(a) = f(pz1,(a))

ΦZ,Z,∅(a) = f(pz1,(a))
∏

i∈Z\z1

f(pi,Z(a)) ∀a

We can now see that Φz1,z1,∅ ≥ ΦZ,Z,∅ since the extra probability terms in the latter

cannot be greater than one. We know that the viral load for strains other than z1 cannot be

zero for all days because then the strain would not be a member of the largest coinfection.

Thus, so long as the viral loads for the strains z ∈ Z\z1 are �nite then their corresponding

probabilities will be less than unity and we have a strict inequality.

∑m
a=0 sz1 (a) Φz1,z1,∅(a)∑m
a=0 sZ(a) ΦZ,Z,∅(a)

≥
∑m

a=0 sz1 (a) Φz1,z1,∅(a)∑m
a=0 sz1 (a) ΦZ,Z,∅(a)

>
∑m

a=0 sz1 (a) Φz1,z1,∅(a)∑m
a=0 sz(a) Φz1,z1,∅(a)

> 1

yz1,∅(0, t+ 1) > yz1,∅(0, t) +

∑
x⊇z1,x 6=z1

∑
v⊆xc

∑m
a=0 yx,v(a, t) Φx,z1,∅(a)∑m

a=0 sZ(a) ΦZ,Z,∅(a)
(18)

Having applied a steady state condition on r∅ we can now see a contradiction. Equation

18 shows us that yz1,∅(0, t) must be increasing when this steady-state condition holds. This

would reduce r∅ and contradict our claim of a steady state. Thus, the largest coinfection

must be extinguished at steady state.
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4.3.1 Approaching Steady State

The logic given above has made use of the threshold r∅ = [β
∑m

a=0 sz(a) ΦZ,Z,∅(a)]−1. When

r∅ is larger than this threshold, there are enough naive hosts to cause the coinfection to

grow. It cannot grow to engulf the entire population, because any coinfection creates a

total number of new infections which is greater than the new coinfections - by virtue of

the fact that coinfections can create singleton infections as well. Thus, increases in the

number of coinfections are o�set by still larger decreases in the naive population, forcing the

naive population to the threshold near steady-state. If r∅ is below the threshold, then the

population of the coinfection must necessarily shrink. The only way in which the coinfection

can persist is if r∅ is exactly equal to the threshold. The previous section demonstrates why

this is not possible. This also precludes any unstable equilibrium which is not zero. If the

entire population has a coinfection, some portion of recycled naive hosts will have a single

infection, deplete the naive population, and r∅ will eventually reach the threshold, then fall

below it.

4.3.2 Any Coinfection Must Become Extinct

In this section we have shown that the largest coinfection, consisting of all strains in Z,

must eventually extinguish itself. When this happens, any remaining coinfections will have

one less strain than the master strain. However, since these strains will consist of the

largest coinfection available to any individuals in the population, their time-series equations

will have the same form as the master equation. By inducting over the logic given in this

section, all smaller infections will become extinct. This leaves only singleton infections.

This inductive argument forces our assumptions to apply to all singletons, and not just

some arbitrary z1.
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4.3.3 Coinfections Vanish Under Certain Conditions

We have shown that coinfections vanish under the following two assumptions.

1. Each singleton infection causes an equal or lower per-day mortality rate when com-

pared to any coinfection containing that single strain.

2. The parasite densities for any single strain are not smaller than densities for that strain

when it is a member of a coinfection.

This assumes that there is no positive interaction among a coinfection's constituent strains.

If such interaction has a negative e�ect on the coinfection - and parasite densities for strains

in a coinfection are lower than the parasite densities for the singleton infection - then sin-

gletons will grow even faster relative to the coinfections at the threshold, and coinfections

will still become extinct. While a positive interaction may make it possible to observe coin-

fections in this model, it is not likely, given that multiple strains must often compete for the

same limited resources in the host.
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5 The Superinfection Model

Section 4 presented a multistrain model in which coinfections propagate solely from other

coinfections. This excludes the possibility that one host could become infected with two

strains from di�erent hosts, a process which we will call superinfection. We will include this

in the superinfection model, named to distinguish it from the simpli�ed coinfection model, in

which all coinfections are simultaneous. Since we don't understand the dynamic importance

of superinfections a priori, we would like to explore it using our model.

The Case For Superinfections. The hypothesis that superinfections occur is based on

two arguments. First, coinfections are observed in nature. In fact, between 30% and 80%

of all P. falciparum infections consist of more than one strain [7]. This is also supported by

observations of the parasite's erythrocyte stage in which parasite strains vary the antigens

that line the surface of the red blood cell [6]. This provides evidence that coinfections are

common in malaria epidemics, leading researchers to create models that not only include

multiple strains, but also seek to understand the way in which interactions between strains

a�ect the transmission, diversity, and progression of the disease [16, 20].

The second argument, based on the theory demonstrated in Section 4.3, is that coinfec-

tions will become extinct in systems where they can propagate only from other coinfections,

where they share the same parasite density curves as the single infections, and where the

survivability of a coinfection is no better than its most potent single infection. Since positive

interactions between strains � in which survivability and transmissibility are enhanced in a

coinfection � are less likely than negative interactions, we can rule out the coinfection model.

Given this argument, combined with the evidence that coinfections exist in nature, there is

a strong justi�cation for relaxing the assumptions of our model to include superinfection.
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The Superinfection Model Requires Stochastic Simulation. While it is possible to

formulate deterministic equations for the superinfection model which are based upon those

for the coinfection model, developed in section 4, solving these equations would be extremely

time-consuming because they are signi�cantly more complex. Therefore, we must rely on

simulation to produce numerical results.

To understand the computational cost of solving such deterministic equations, consider

the fact that the deterministic equations for the simpler coinfection model with 2 strains,

each of which has a 30-day course of infection produces 5 × 30 = 150 distinct states, cor-

responding to a coupled di�erential equation. In contrast, the superinfection model would

have at least 30× 30 = 900 di�erent states, each corresponding to the di�erent ages of each

strain in the coinfection. This is very computationally costly in practice, but not outside

the reach of commonly used methods. However, the computational-time scaling is 30n for

n strains. Rather than deal with this complexity, we have used a stochastic model, via

simulations.

5.1 Simulation Methods

A population of hosts where interactions transmit malaria is analogous to a system of re-

acting particles. The individual hosts behave as particles in which the transmission of a

strain from an infected host to a naive host serves as a �reaction� which leaves the former

untouched, and converts the latter into a newly-infected host. Using an algorithm, we can

employ Monte Carlo simulation methods to project changes in malaria prevalence based on

the probabilities of di�erent reactions a�ecting each individual.

The Gillespie algorithm [14] provides a useful method for conducting these discrete

stochastic simulations. The probability of each reaction in an infectious disease is de�ned

by our model. In the model developed in this thesis, the probability of transmission is equal

to the probability of infecting a vector, given by the Φ function, scaled by the transmission
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rate parameter that incorporates the rate of contacts between people and vectors, and the

probability of transmission per contact. Therefore, for each set of parameters, we may de�ne

all of the possible �reactions� and their probabilities.

The Gillespie algorithm formalizes these probabilities in an elegant way. Let us call

the state of the system X(t) at time t. This is sometimes called the state vector and is

de�ned as X(t) = (X1(t), . . . , XM (t)) where there are M di�erent states and Xi(t) is the

population of state i at time t. In our system, the states represent populations of hosts

carrying a particular set of strains. Each reaction denoted Rj has two parts. The state-

change vector is de�ned as vj = (v1j , . . . , vMj) where vij is the change in i-th state by the

j-th reaction. The reaction causes the system to instantaneously change from x = X(t)

to x + vj . The second component of the reaction is its propensity aj(x) = cjpj which is

the the product of the probability of the j-th reaction and the number of combinations of

possible reactants. The quantity cjdt is the probability of an infection event occurring on

the time interval [t, t+ dt). Since every reaction in an infectious disease system follows the

form infected+ naive→ infected+ infected, we �nd that hj is always the product of the

naive and infected populations for that reaction.

The Gillespie algorithm proceeds as follows. First, two uniformly-distributed random

numbers r1and r2are drawn from the unit interval. Then we de�ne a0(x) =
∑
aj(x) which

is used to calculate the exponential waiting time to the next reaction, τ = 1
a0(x) ln( 1

r1
).

The second random number is used to select a particular reaction according to their relative

propensities. The next reaction is the j-th reaction, where j is the smallest integer satisfying

the condition
∑j

i=1 ai(x) > r2a0(x).

While this method can accurately simulate our system stochastically, it is somewhat

computationally ine�cient. For that reason, we have implemented a coarse-graining method

called the binomial τ -leaping method, which decreases the computational cost of the sim-

ulation while ensuring conservation of population. In this method, larger time-steps are
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used, and each reaction ��res� a number of times which is given by a binomial distribution

[4]. The simulation results in the following sections were checked against the exact Gillespie

algorithm to con�rm that the τ -leaping method did not introduce any unusual e�ects.

The simulation was written in C++ and embedded Python for usability. It is designed

to track every host in the system in a literal way. With the �ring of each new reaction,

the reactant hosts are chosen at random from the population. Because the system allows

reactions in which a host with one strain may be infected with another, it e�ectively simulates

the superinfection model.

5.2 Simulation Design

Experiments conducted in mice provide the parasite density curves for coinfections. The

experimental data were provided by Silvie Huijben, a member of Professor Andrew Read's

group in the Center for Infectious Disease Dynamics at the Pennsylvania State University.

Even though it is possible to extend these simulations to include an arbitrary number of

strains, only limited by computational resources, we will consider only two strains of the dis-

ease, with interactions which are based upon the experimental data. These data describe the

parasite densities for one drug-resistant and one drug-susceptible strain, which are primarily

distinguished by the parasite density of the second peak of the infection, shown in Figure

3. We have chosen these particular strains in order to eventually develop optimal treatment

strategies which extinguish the resistant strain, and hence extend the useful lifetime of each

treatment. Treatment strategies are not considered in this thesis, however, the interactions

between the two strains in individual hosts may determine the way in which they propagate.

Appendix A provides a detailed explanation for how these data were modi�ed to represent

the course of the disease in humans.
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Figure 3: Parasite densities for the resistant and susceptible strains, in single infections.
Note that the resistant strain (in blue) is characterized by a smaller second peak parasite
density.

Negative Interactions in Superinfections. Instead of allowing coinfections which have

the same properties as their respective single-strain infections, we have chosen to make

three modi�cations which will improve the realism of the simulations and create negative

interactions between the coinfection strains.

• Superinfection is only possible during the �rst ten days of an infection. After this

point, there is a immunity window which extends to the trough which follows the

initial parasite peak, in which we assume the immune system is activated enough to

prevent a new infection.

• Superinfections in which the resistant strain infects the host after infection by the sus-

ceptible one, and also occur during the initial 10-day period, have attenuated parasite

densities. Superinfections in which the resistant strain infects the host �rst will follow

the same parasite densities as their respective single-strain infections. We justify this

by noting that the resistant strain normally carries a competitive disadvantage, which

makes it resistant to drug treatment. This will become important in future studies of
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the e�ects of drug treatment, which are not part of this thesis.

• For the remainder of the infection, superinfection is possible, and the superinfecting

strain will obey its single-strain parasite densities.

• There is a 12-day incubation period in which the host is no longer naive, but does

not have parasite densities which are high enough to transmit to other hosts. This

corresponds to the period in which the parasites must incubate in the liver.

The justi�cation for these changes is provided in Appendix A, which also explains how

these data were extracted from experiments involving mice. The e�ect of these changes is

to attenuate the parasite densities of the resistant strain in a coinfection with the suscep-

tible one, compared to a single infection. Additionally, we have introduced an immunity

window for the duration of the initial peak parasite densities, which mimics the immune

response, during which time a superinfection may be unlikely. These e�ects are called nega-

tive interactions, because they serve to decrease the potency of a coinfection compared to an

infection with both strains that follow the parasite densities of their respective single-strain

infections. This is not only biologically feasible, it also helps us test the parameters under

which coinfections may be too weak to sustain themselves. That is, we expect that stronger

negative interactions will result in fewer coinfections. In future studies, it would be useful

to test interactions further, by varying the immunity window and relaxing the assumptions

in this section.

Parameter Choices. Given the experimental data, the simulations have six parameters

along with the initial conditions. These include the half-saturation and shape parameters

of the transmission-to-vector probability function, the population size N , the transmission

parameter β, the natural death rate, and the vector of death probabilities for the course of

the infection.
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The natural death rate is chosen to be commensurate with the expected lifespan of an

individual who lives in a malaria stricken region. For the simulations, I have assumed an

average lifespan of 50 years. This is signi�cantly higher than many countries in sub-Saharan

Africa, in which malaria is most prevalent; for example, Tanzania has a high incidence of

malaria and an expected lifespan of 36 years [26]. However, diseases like malaria contribute

signi�cantly to this low life expectancy, and the population of these countries is overwhelm-

ingly skewed towards children. Therefore, it is reasonable to assume that the background

life expectancy would be higher.

Second, it is necessary to de�ne the probability of mortality due to malaria. I have

assumed that this 6% for both strains of the disease. This is primarily based on a literature

review conducted by Alles et. al. which demonstrated that the fatality rate for P. falciparum

malaria is at least 2% and as high as 20% [1]. I have applied this 6% mortality rate evenly

across the 60 days during the course of the 91-day course of infection which correspond

to heightened parasite densities, under the assumption that mortality is much more likely

to die during this period. This is a bold assumption, and may have a�ected the overall

outcomes of the disease, therefore it may be useful to test it in the future. Though full-scale

simulations were not conducted with di�erent natural and disease death rates, changing the

background death rate to correspond to an average lifespan anywhere from 25 to 75 years

did not change the results at all; increasing disease mortality to 20% did not change the

qualitative results.

The transmission rate β and population sizeN are vital to the dynamics of the model and

must therefore must be varied across a wide range in order to understand the behavior of the

model. In this case, we only need to vary β because it scales every population term in which

new infections are created. The population size must be large enough that random e�ects do

not extinguish the disease in our simulations, but small enough that the simulations run on

limited computational resources. For that reason, I have chosen a population size of 50,000,
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which roughly mimics a small city or town. I have varied β across a wide range of values in

order to understand how transmission a�ects the overall outcomes of the disease.

Perhaps the greatest unknowns in these simulations are the parameters which translate

the parasite densities into probabilities of infection, given in the f -function and hence also

the Φ function. It is di�cult to estimate these parameters because there is insu�cient

understanding of the distribution, timing, and exact mechanism of the transfer to mosquitoes

to conclude that a single parameter value is appropriate. Since the half-saturation point has

a profound e�ect on the overall shape of the probability curve, I have studied the model

across a wide range of half-saturation densities. Figure 4 provides an example of these

probability functions, with di�erent half-saturation points. Since high half-saturation values

prevent the disease from reaching full probability, relatively higher transmission rates are

required to provide an equivalent comparison of �shape�. This will be discussed further in

the following sections.
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Figure 4: A depiction of the probability of infection f(p(a)) with the resistant strain. The
half-saturation densities are 101, 103, and 106 parasites per microliter of blood. Notice that
at high half-saturation points, the probability is never unity. The shape parameter is q = 1.
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Figure 5: A depiction of the probability of infection f(p(a)) with the resistant strain. In
this case, we can see that the overall shape changes very little between shape parameters of
1
2 , 1, and 2. The half-saturation density is 103 parasites per microliter of blood.
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Lastly, we must choose a shape parameter for the transmission-to-vector probability

function. I have selected unity, because the resulting parasite density curves do not signif-

icantly change shape with higher and lower shape parameters. The shape parameter may

have a slight impact on the periodic e�ects of the infected populations, since it may change

the number of days in which a host is maximally infective. However, the half-saturation

parameter will have a more dramatic e�ect on the shape of these probability curves. This

is pictured in Figure 5.

Summary of Parameter Choices. The following list summarizes the �xed parameter

choices. Widely variable transmission rates and half-saturation densities will be used to

evaluate the behavior of the model.

• The background death rate corresponds to an expected lifespan of 50 years.

• The overall disease mortality rate is 6%, over the course of 60 days, which correspond

to the highest parasite densities.

• The shape parameter is set to 1, because it does not change the shape of the probability

curves as signi�cantly as the half-saturation point.

• Population size of 50,000 because it is large enough to minimize noise in the simula-

tions, and small enough to be computationally e�cient.

5.3 Results

Having �xed all but two key parameters: the transmission rate and the half-saturation

density, I have analyzed the state of the system after 2,000 days, with two groups of 1,000

hosts infected with each strain at the beginning of each simulation. After an initial survey of

the simulation results across a very wide range of parameters, I have restricted my analysis

to transmission values between 10−6 and 10−3 because the infections always become extinct
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at lower transmissions and the entire population is infected at higher transmission rates.

In fact, we will see that this infection saturation occurs in much of this parameter range

as well. I have also restricted my study of the half-saturation point to a range between

1 and 109 because this covers a large range of probability curve shapes. Moreover, half-

saturation below 102 ensures that there is very nearly a 100% probability of transmission

to the mosquito on each day of infection, and half-saturation densities which are higher

than 109 result in extinction. This is because they reduce the maximum probability of

transmission.

Each simulation lasted at least 2,000 days or about 5.5 years. This was almost always

su�cient for the system to converge to a state independent of the initial conditions. Figure

6 shows the proportion of hosts which are infected at equilibrium and Figure 7 depicts

the amount coinfections in a density plot. The distinguishing feature of these plots is

the transition from unsustainable transmission to a population that is entirely infected

with coinfections. This happens in both directions, as transmission increases, and as the

half-saturation density decreases, since lower half-saturation lowers the maximum of the

probability curves. If β < 10−6, then transmission is not self-sustaining even with full

probability of transmitting to a vector (that is, f(x) = 1). In this case, the disease becomes

extinct. The ceiling on the half-saturation density (c) is weaker. We may say that ∀c, ∃β∗

such that β > β ∗ (c) implies that transmission is sustained. We leave an exploration of the

shape of β ∗ (c) as c → ∞ as an open problem which merits further attention, because it

will describe the half-saturation density ceiling above which self-sustained transmission is

possible.
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Figure 6: This plot shows the proportion of infected hosts, including both single infections
and coinfections. Each curve represents a di�erent half-saturation point, with lower half-
saturation points producing higher proportions of infected hosts. The populations were
averaged across the �nal 500 days of simulation to minimize noise.

Figure 7: This density plot is shaded according to the number of coinfections. Dark blue
represents the absence of infections, while bright yellow parts of the plot represent a high �
in this case saturated � population of coinfected hosts, which have crowded out any single
infections.
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These plots highlight several distinct features of the model. At low transmission rates

and high half-saturation densities, there are no infections present at equilibrium. A system

with low transmission may prevent one infection from creating enough secondary infections

to sustain itself, while a system with high half-saturation produces a ceiling, depicted in

Figure 4, on the maximal probability of transmission to the vector, which has the same

e�ect as reducing transmission.

Figure 8 shows the results from four di�erent time-series of the superinfection model

simulation, each with a di�erent overall outcome. These were all taken from the same half-

saturation density of 104 so that they can easily be associated with a single row in Figure

9, which plots the outcomes across the parameter space of di�erent transmission rates and

half-saturation densities.
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Figure 8: Time series for four representative simulations. These correspond to di�erent
transmission rates along a single horizontal row (c = 4.0) on the parameter space map
shown in Figure 9. Lower populations show noise which is deceptively large due to the
logarithmic plots. Note that for simplicity, I have plotted only the 0-day-old single-strain
infections and coinfections where at least one of the infections has begun within 1 day. For
this reason, the total number of infected hosts for a particular strain is often higher than the
number of naive hosts, even though it appears lower on the plot. Coinfections are depicted
by the curve �AS+AJ�.

Figure 9 shows a color-coded map across the two-dimensional parameter space, in which

each color corresponds to a di�erent ranking of infected populations. Aside from the region

in which both strains become extinct, the plot has two important features. Most of the

parameter space is consumed by three large regions. In the upper-left corner lies the �extinct

zone� in which no infections are possible. In the center and lower-right part of the plot is the

�high-transmissibility� zone in which β is large or the half-saturation point is low, meaning

that the probability of transmission to the vector is high � this somewhat opposes the drop
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in transmissibility when the half-saturation point is high, and the probability of transmitting

to a vector is never zero. In the high-transmissibility zone, coinfections dominate, but it is

possible for either the resistant (denoted AJ) or susceptible (denoted AS) strain to have the

second-largest infected population. In the middle of the plot lies the roughly crescent-shaped

�intermediate zone� in which there is disease at equilibrium, but overall transmissibility is

not high enough to cause coinfections to dominate. Instead, the susceptible strain (AS) has

the largest infected population. Figure 8 provides samples of the time series for each major

type of equilibrium denoted in Figure 9, across a single half-saturation density, pictured

horizontally on the parameter space plot.
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Figure 9: A color-coded representation of the largest to smallest infected populations at
equilibrium. In the blue and yellow regions (the high transmissibility zone), coinfections
dominate both single strains. Along the roughly crescent-shaped boundary between the
disease-free state and the diseased states, there are some simulations in which coinfections
were not dominant (this is the intermediate zone).

When classifying the equilibria of the stochastic superinfection system, we are primarily

concerned with the relative populations of each strain combination and the types of oscil-

lation and noise. The plots in this section have demonstrated that there are three zones in

the transmissibility and half-saturation parameter space: an extinct zone, a zone of high

transmissibility in which coinfections dominate, and an intermediate zone in which the sus-

ceptible strain dominates the coinfections. The noise was generally constant, and relatively
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proportional to the population size. Pronounced oscillations appeared in several places, but

were more likely to be found in areas with higher transmissibility. The oscillation period

was invariant, and was always roughly 90 days, the duration of the disease.

53



6 Conclusions and Future Work

In the preceding sections, we have developed a theory for the spread of multiple strains of

malaria based on malaria's within-host dynamics. In our theory, the parasite density for

an infection of a particular age � given by experimental data � determines the probability

of transmitting the strains from a human host to a mosquito, according to transmission-to-

vector function. This function is characterized by the half-saturation density, which is the

parasite density at which there is a 50% chance of transmission to a vector during a single

interaction. In concert with the transmission probability, I have shown that these parameters

have a profound e�ect on the steady-state outcomes of the disease. Speci�cally, it is clear

that coinfections dominate the population in regions with high transmission. However,

the crescent-shaped boundary (pictured in Figure 9) between regions of this parameter

space with no infection, and those with dominant coinfections also shows areas where the

susceptible strain dominates the population, but coinfections still exist in smaller quantities.

These results suggest that superinfection can explain the maintenance of coinfections in a

population, regardless of the parameters, since coinfections were present in almost all of

the diseased equilibria. Moreover, the clear distinctions between disease-free, single-strain

dominant, and coinfection-dominant parts of our parameter space also indicates that that

the shape of the transmission-to-vector probability curve in�uences the equilibrium outcomes

of the disease.

These results represent only a fraction of the power of this model and there are many

opportunities test alternative hypotheses. For example, it would be useful to run simulations

to determine the transmission and half-saturation parameters under which the resistant

strain is able to �invade� or reach signi�cant prevalence in a population that has already

reached equilibrium with the susceptible strain. It would also be useful to create even

stronger negative interactions between the strains in a coinfection in order to determine

just how strong coinfections can be, since it is possible that coinfections exist in our model
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thanks to the relatively weak competitive exclusion between strains. If we compare these

results to simulations with no coinfections, we may also �nd that coinfections provide an

advantage which allows the weaker strain to persist under low transmission rates and heavy

competition from another strain, where it might not otherwise survive. Finally, we have

access to experiments which describe the attenuation of both resistant and susceptible strains

under drug treatments. In future research we will use these to study the e�ects of treatment

on the survivability of both strains, in order to design optimal treatment strategies.

Even in comparison to more detailed models, this model impacts future e�orts in study-

ing infectious disease. By showing that the shape of the probability curve may have a

profound e�ect on both the persistence of malaria and the relative proportion of coinfec-

tions, we have demonstrated the importance of within-host dynamics. These results also

suggest an important role for superinfection in supporting the persistence of multiple-strain

infections. We may conclude that future e�orts to characterize and control malaria � and

also other infectious diseases � require the consideration of both superinfections with mul-

tiple strains and more generally, the e�ect of the within-host dynamics on the transmission

of the disease.
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A Appendix: Parasite Densities

In order to analyze the e�ectiveness of this malaria model, we must �rst extract reasonable

parasite density curves from the experimental data. This section will summarize the way

in which the data were modi�ed. We have used two sets of experimental data, both of

which were provided by Silvie Huijben, a member of Professor Andrew Read's group in

the Center for Infectious Disease Dynamics at the Pennsylvania State University. Professor

Andrew Read is Professor of Biology and Entomology. The experiments have not yet been

published.

A.1 Parasite Densities are Given By Experiments in Mice

The �rst set of data consists of a series of experiments which tracked parasite densities for

mice infected with rodent malaria. Two clones of the rodent malaria Plasmodium chabaudi

were used: a treatment-resistant strain (AJ) and a treatment-susceptible strain (AS). Since

Malaria has a two-stage reproductive cycle, the experimental data contain measurements of

the number of both asexual and sexual parasites per microliter of blood. While the sexual

stage is responsible for transmission to mosquitoes, the asexual parasite densities are higher,

and thus less noisy. Since the shape of both asexual and sexual parasites is roughly the same,

we have opted to use the asexual parasites. The probability of infection is in�uenced by the

f -function, which has �exible half-saturation and shape parameters described in Section 3.2.

Since these may be tuned to adjust the way in which the parasite densities are translated

into probabilities, using the asexual parasite counts will not a�ect the role of the parasite

densities in our model.

The �rst experiment provides the density data for single infections and coinfections, but

not superinfections. The original experiment data for single infections are shown in Figure

10 whereas coinfections are depicted in Figure 11. For superinfections, we have turned to

another set of experiments.
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The second set of experiments was designed to describe the parasite densities in a coin-

fection (AS+AJ) in which the initial inoculum of the resistant clone AJ was lower than the

inoculum of AS. This gave the AS clone a competitive advantage, which led to attenuated

levels of the AJ clone. The data are plotted along with the interpolated data in Figure 14.

We will use these data to infer the parasite densities for a coinfection in which there is a

several-days delay before the subject is inoculated with the AJ clone, since a time-delay

between infections is physically similar to observing an infection with a lower inoculum of

one strain.

Figure 10: Experimental parasite densities for single infections with the AJ clone (blue) or
the AS clone (red) in mice.
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Figure 11: Experimental parasite densities for AJ (green) and AS (purple) in a simultaneous
coinfection in mice.

A.2 Di�erences Between Malaria in Mice and Humans

In order to use the parasite density data from experiments in rodent malaria in a model

for human malaria, it is necessary to translate these data so that they coincide with known

features of human malaria. First, rodent malaria parasites reproduce on a 24-hour cycle,

while human malaria - Plasmodium falciparum - reproduces on a 48-hour cycle [13]. Since

the di�erence is an integer multiple of 24 hours, we simply scale the experimental data by a

factor of 2 with respect to time. Thus, each day of the simulation on a rodent malaria time

scale will correspond to 2 days of human malaria. In the following plots, we have pictured

the parasite densities with the human time scale.

Second, human malaria is asymptomatic for the �rst 6 to 14 days, with a median of 11

days [41]. This period may roughly correspond to the incubation time in the human liver

before the parasites enter the bloodstream, at which point the disease becomes transmissible.

In the experiments, the parasite densities were not measured until the third day of the mice

experiments. To replace the missing data, we have extrapolated the data to approximately

101.8 parasites per microliter of blood at the beginning of the experiment, using the �rst
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available slope. Since we expect the liver to inoculate the blood with roughly the same

amount of parasites regardless of the type of infection, we will force each infection to match

this density for the day corresponding to the start of the experiment. Even though this will

produce slightly di�erent initial growth rates for some of the curves, the di�erence will not

noticeably change our model.

Without experimental data to describe the amount of initial bloodstream inoculum or

the exact time of incubation in the liver, we must infer these parameters. Let us assume that

symptoms arise at the midpoint of the reported 8-30 day delay, or 19 days, which we round

to 18 so that we can evenly convert it into mouse-malaria time. Then let us assume that

these symptoms arise at roughly half the number of logarithms between the initial inoculum

and the peak. This would correspond to a 12-day human incubation time in humans, which

is pictured in Figure 14. It is possible that the initial bloodstream inoculum is lower than

101.8 parasites per microliter, however at such low densities, this will have almost no e�ect on

transmission. Nevertheless, this solution meets the requirements of our model by preserving

the shape of the parasite density curves, and roughly aligning the time until symptoms arise

with the steepest part of the initial growth curve.

Third, it is necessary to consider the limits of our experimental data. We expect the

parasite density to vary among each host. Moreover, there many be di�erences among rodent

and human malaria parasites, despite their similar physiology and mechanisms. Therefore,

in order to capture the general shape of the parasite density curves in our simulation,

without amplifying the e�ects of any noise from our experimental data, we have smoothed

- via interpolation - any data points which show one-day peaks or troughs. We have also

scaled the AJ data slightly, so that they peak at the same parasite density, and hence have

the same maximum transmission probability. This preserves the natural shape of the curves

while making them more general, and hence applicable to a large number of simulated hosts.
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A.3 Description of Parasite Densities for Human Malaria Simulations

The data which represent the parasite densities for human malaria are summarized in the

following section. We will consider four cases: single strains, simultaneous coinfections, and

superinfections with delayed inoculation of either the AS or AJ clone.

Single-Strain Infections. Data from the �rst set of experiments are summarized below,

including the parasite densities of the single-strain infections and equal-inoculum coinfec-

tions. Even though we have access to similar data from the second set of experiments, these

experiments did not include the parasite density curves for AJ alone. To maintain consis-

tency, we are using the �rst set of experiments to de�ne both single-strain and coinfection

curves, leaving the second set of experiments to describe only the superinfections. Both

single-strain courses-of-infection are pictured in Figure A.3. There is a 12-day incubation

period in the liver, after which time the parasites appear in the bloodstream.

To maintain consistency among single-strain infections and superinfections, we have used

the same 90-day course-of-infection as the second set of experiments, which involved a longer

duration of data collection to include the second peak of parasites in the susceptible clone.

In addition to smoothing one-day noise by interpolation, we have extrapolated the tail of

the AS curve to complete the second peak. The second set of experiments provides a curve

for AS which extends to 90 days on the 24-hour cycle. These data have been appended to

the tail of this curve, and scaled to the height of the �nal measurement on the shorter curve,

to avoid discontinuity. This allows the second peak, a major feature of the single AS clone,

to be included in the curve.
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Figure 12: Parasite densities for the resistant strain (blue) and susceptible strain (red) in
single infections.

Simultaneous Coinfection. The parasite densities throughout the course-of-infection for

coinfections which begin on the same day - whether they are transmitted by a single host,

or di�erent hosts - will adhere to the experimental data in which the mice were inoculated

with the same number of parasites. The parasite densities are pictured in Figure 13, which

shows an extra peak immediately after the initial peak. These curves were subject to the

same procedures mentioned above. That is, they were extended to match the extra data pro-

vided by the second set of experiments without discontinuity, they were extrapolated to the

universal bloodstream inoculum density, and one-day noise was removed with interpolation.
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Figure 13: This chart describes the parasite densities for simultaneous coinfection, which
includes the susceptible, AJ clone (red) and the resistant, AS clone (blue). The coinfection
curves show an intermediate peak that is not present for the single infections.

Resistant Strain Infects a Host With the Susceptible Strain. When a resistant

strain infects a host which already has the susceptible strain, the immune response and

competition with the susceptible strain will attenuate the resistant infection. It cannot

realize the same densities as a single resistant infection. In this case, we will use coinfection

experiments with a lower resistant strain inoculum to approximate a delayed infection. This

method is supported by evidence that the greater the time between an AS and subsequent

AJ infection, the weaker the AJ infection will be [9].

To make this approximation, however, we must assume that both infections have the

same density of parasites at some point in their respective courses-of-infection. We assume

that this occurs at the initial inoculation of the bloodstream, from parasites which were

incubated in the liver. This allows us to interpolate between parasite densities which cor-

respond to an attenuated initial inoculum of the AJ clone so that each delayed infection

with AJ still starts at 101.8 parasites per microliter. This e�ectively describes a delayed

infection while agreeing with our assumptions about the incubation period and bloodstream

inoculum. The data are summarized in Figure 14. As with all of our data, we have also
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removed any one-day noise with interpolation.

Figure 14: This chart describes the parasite densities for superinfections with a resistant, AS
infection (blue) following a resistant AJ infection (black). The AJ data were interpolated
from the experimental data (dashed, red), in which the AJ inoculum was smaller than the
AS inoculum.

Susceptible Strain Infects a Host With the Resistant Strain. We have no ex-

perimental data regarding the reverse situation, in which a susceptible infection follows a

resistant one. While there is evidence that a susceptible infection which follows a resistant

one will be attenuated, [9] we also know that there are often biological costs associated

with resistance to drug treatments. Therefore, the susceptible strain will be attenuated

less than the resistant strain in the reverse case. It is reasonable, then, to assume that

susceptible infection may not be attenuated, and follows the same course-of-infection as its

single infection, given in Section A.3. Without more experimental data, we cannot relax this

assumption. It is useful, however, because it is the simplest assumption for the dynamics of

a superinfection with a delayed susceptible strain.
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B Appendix: Simulation Code

The following sections outline the simulation code which was used in this thesis. The C++

code was compiled using GNU C++ version 3.4.6, and embedded a Python package called

�mis� (short of Malaria Infection Simulator), which was compiled with Python 2.6. The

library links against the GNU Scienti�c Library (GSL) in order to generate random numbers

by a binomial distribution. At the time this thesis was printed, the code was still under

development in order to include an arbitrary number of strains. As such, some of the features

of the program will accomodate many strains, while others are only designed for the two-

strain model studied in this thesis. The code employs the binomial τ -leaping method to

simulate the model, and randomly selects recipient hosts of the desired type whenever a

reaction occurs.

The simulation code uses a binary system to represent the state of the host. For the

2-strain model, I have used a 4-bit number. The two leftmost bits correspond to the strains

which the host has recovered from, while the remaining two bits represent the active in-

fections. For example, if a host is recovered from the �rst strain, but is infected with the

second strain, then the host state will be 0110 = 6 (we read the digits in each half of our

4-bit number from right to left). Some states are not possible, such as 0101 = 5 which im-

plies that the host is infected with the �rst strain (the resistant strain), but is also recovered

from it, which is a contradiction because I have assumed permanent immunity. In order to

represent the days of both infections in a single number, I have also employed the following

formula for encoding two days of infection x, and y in a single number k(x, y) = x+D × y

where D is the duration of the infection. This is used throughout the code.

The code requires 3 data �les: a single/coinfection �le, a superinfection �le, and a sur-

vivability �le. The values are not printed with this thesis because they rely on experimental

data which have not yet been published. If our infection lasts D days, then the required

single/coinfection tab-delimited text �le consists of a 6×D matrix of log (base 10) parasite
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densities, where the �rst two rows correspond to the parasite densities for each strain in

a single infection with one strain (one row will be blank), the next two represent a single

infection with the other strain (the alternate strain will be blank), and the �nal two rows

represent both strains in a coinfection.

The superinfection �le consists of a (2×D)×D matrix which captures only the parasite

loads for delayed infections in which strain 2 (the susceptible one) infects the host �rst.

Recall that when the resistant strain infects the host �rst, we have assumed that the parasite

densities will be the same as a coinfection. The i-th and D + i-th rows of this matrix

correspond to the parasite loads for a delayed resistant strain superinfection which is delayed

by i days. Lastly, the survivability �le contains a 2×D matrix holding the probability that

a host will survive the infection on the day corresponding to the column, where the �rst

row corresponds to the resistant strain, and the second corresponds to the susceptible one.

These survival probabilities were the same for both strains in this thesis.

B.1 Python Script: �script.py�

import mis

import time

def init ():

print "Loading data."

mis.load_data(filename='asex_noootreatment_55.txt ',

super_filename='asex_noootreatment_super21.txt ')

mis.load_survivability_data('survivability.txt ')

def run():

## Name Output Files

mis.out_names(pops=" expt_4_ %012.8f" % script_B ,

report =" expt_4_REPORT.dat")

## Pass Parameters

print "Passing parameters ."

mis.model_parameters(B=script_B , N=script_N ,

phi_cutoff=script_phi_cutoff ,

phi_power=script_phi_power ,

disease_death_rate=script_disease_death_rate ,

natural_death_rate=script_natural_death_rate ,

super_infection =1, print_rates =0)

## Prepare Simulation

print "Generating reaction probabilities ."

start = time.clock()
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mis.generate_probabilities ()

end = time.clock()

mis.initialize_counters ()

## Seed Infection

print "Seeding infection ."

for i in range (0,3):

if script_seeds[i] != 0:

mis.seed_infection (1, script_seeds[i])

## Run Simulation

print "Running simulation ."

start = time.clock()

for i in range (1 ,20000):

mis.step_BD (100)

#if ((i%1000)==0):

# print "Internal counter is: ", i, "."

end = time.clock()

## Cleanup

mis.reset_counters ()

## Fixed Parameters

script_phi_cutoff =10**4

script_phi_power =1

script_disease_death_rate =0

script_natural_death_rate =0.000055

script_seeds = [0, 0, 5000]

script_N = 50000

init()

betas = [0.00001]

for script_B in betas:

run()

B.2 De�nitions and Interface with Python: �mis.cpp�

#include <Python.h>

#include <iostream >

#include <iomanip >

#include <fstream >

#include <vector >

#include <math.h>

#include "gsl/gsl_rng.h"

#include "gsl/gsl_randist.h"

using namespace std;

// VIRAL DENSITY VARIABLES

vector <float > * data; // Single -Strain Infection Data

vector <float > * super21_1; // Superinfection Data , strain 1, then 2

vector <float > * super21_2; // Superinfection Data , strain 2, then 1

vector <float > * survivability; // Daily disease survival probs.

int COI; // The duration of the infection

int kernels; // Lines in "data" (for 2 strains: 6)

// SIMULATION PARAMETERS

int N = -1; // Population size

float t; // Time (days)
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int day; // The next integer day.

int rxns; // Total possible reactions

int step_num; // Step counter

int duration; // Total number of steps to simulate

float time_step; // Time until next reaction

// MODEL PARAMETERS

float B = -1; // Transmission parameter

float phi_cutoff = -1; // Half -saturation density

float phi_power = -1; // Shape parameter

float disease_death_rate = -1; // Unused (see survivability)

float natural_death_rate = -1; // Background death rate

int SUPER = -1;

// COUNTERS

int M; // Number of strains (fixed at 2)

int *toc; // Binary lookup table , valid strains

int *toc_coinfect; // Binary lookup table , number of strains

int L; // Index for days in recipient

int K; // Index for days in transmitting host

int J; // Binary state index in recipient

int I; // Binary state index in transmitting host

int H; // Index of strain set (1-3)

int Q; // 2^M

int** pop; // Array of population counts , detailed

int* popC; // Total population counts for each state

int** states; // For nonrandom selection of recipients

double a0; // Sum of propensities

int* rates; // Used to observe rates of infection

// REACTION TABLES

float* tableP; // Reaction probabilities

float* tableM; // Master reaction table

int* tableRi; // Transmitter state , particular reaction

int* tableRj; // Receiver state , particular reaction

int* tableRk; // Transmitter encoded days , particular reaction

int* tableRl; // Receiver encoded days , particular reaction

int* tableRh; // Transmitted strain for a particular reaction

int A; // Length of tableM , fixed

float AA; // Number of rxn with nonzero propensities , updated

int* ktable; // Used for decoding k with different "day" indices

int* ltable; // Used for decoding l with different "day" indices

int* ktableref; // Used for decoding k, l with different "day" indices

int* ktableref2 ;// Used for decoding k, l with different "day" indices

// Output Files

ofstream fp_pop; // Outputs population counts

ofstream fp_report; // Debugging tool

int print_rates = 0; // Set to zero to suppress output of rates

#include "host.h"

gsl_rng * random_number; // Used to generate random number

host* pool; // Array of host objects

void population_output(int increment );

void update_master ();

#include "init.h"

#include "step.h"
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#include "output.h"

static PyMethodDef mis_methods_py [] = {

{ "load_data", (PyCFunction)load_data , METH_VARARGS |

METH_KEYWORDS , "Loads kernel data."},

{ "load_survivability_data", load_survivability_data ,

METH_VARARGS , "Loads survivability data from

specified file."},

{ "load_immune_response_data", load_immune_response_data ,

METH_VARARGS , "Loads immune response curves ."},

{ "model_parameters", (PyCFunction)model_parameters ,

METH_VARARGS | METH_KEYWORDS , "Sets the model parameters ."},

{ "out_names", (PyCFunction)out_names , METH_VARARGS |

METH_KEYWORDS , "Specify output names for a

particular experiment ."},

{ "generate_probabilities", generate_probabilities ,

METH_VARARGS , "Generate the reaction probability table."},

{ "initialize_counters", initialize_counters , METH_VARARGS ,

"Creates counting tables ."},

{ "reset_counters", reset_counters , METH_VARARGS ,

"Resets counting tables for another experiment ."},

{ "seed_infection", seed_infection , METH_VARARGS ,

"Start the infection with a particular strain ."},

{ "step", step , METH_VARARGS , "Orginal stepping method ."},

{ "step_BD", step_BD , METH_VARARGS , "Binomial tau -leap

stepping method ."},

{ NULL , NULL , 0, NULL}

};

PyMODINIT_FUNC initmis(void)

{

(void) Py_InitModule ("mis", mis_methods_py );

}

B.3 The Initialization Header File: �init.h�

// **************************************************************

// Loads the Parasite Density Data and initializes variables

static PyObject*

load_data(PyObject *self , PyObject *args , PyObject *keywds)

{

const char* filename;

const char* super_filename;

static char *kwlist [] = {" filename"," super_filename",NULL};

if (! PyArg_ParseTupleAndKeywords(args , keywds ,"|ss", kwlist ,

&filename , &super_filename )) return NULL;

fp_report << "\ tLoading data from " << filename << ".\n";

fp_report << "\ tLoading super21 data from " << super_filename

<< ".\n";

// First count the lines in the file (6 for the 2 strain model)

ifstream fp_in_count(filename , ios::in);

string line;

int k = 0;

68



while (getline(fp_in_count ,line)) {

kernels ++;

}

fp_in_count.close ();

ifstream fp_in_count2(filename , ios::in);

getline(fp_in_count2 ,line);

while(line[k] != '\0') {

if(line[k] == '\t') { COI++; }

k++;

}

COI ++;

fp_in_count2.close ();

// Calculate limits for most parameters

M = 0;

while (2*( pow(2,M)-1) != kernels)

M++;

fp_report << "\tThe viral load data allow for " << M

<< " strains in this system .\n";

fp_report << "\tThis gives " << I

<< " states (some impossible ).\n";

I = (int)pow(pow(2,M),2);

K = (int)pow(COI+1,M);

J = I;

Q = (int)pow(2,M);

H = (int)(pow(2,M)-1);

// Initialize the population counters

pop = new int* [I];

for (int i=0; i < I; i++)

pop[i] = new int [(COI +1)*( COI +1)];

popC = new int [I];

rates = new int[I*H];

for (int l=0; l < I*H; l++)

rates[l] = 0;

// Read the parasite density data

ifstream fp_in(filename , ios::in);

data = new vector <float >[COI];

float in_value = -1;

for (int i = 0; i < kernels; i++)

{

for(int j = 0; j < COI; j++)

{

fp_in >> in_value;

data[i]. push_back(in_value );

}

}

fp_in.close ();

// Define random number variables

const gsl_rng_type* random_type;

gsl_rng_env_setup ();

random_type = gsl_rng_default;

random_number = gsl_rng_alloc(random_type );

// Create the tables used for encoding 2 age of infection

// indices in 1 number

ktable = new int [M];

ltable = new int [M];
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for (int m=0; m < M; m++) {

ktable[m] = -1;

ltable[m] = -1;

}

ktableref = new int [M+1];

ktableref [0] = 1;

for (int m=0; m < M; m++)

ktableref[m+1] = COI+1;

ktableref2 = new int [M+1];

ktableref2 [0] = 1;

for (int m=0; m < M; m++)

ktableref2[m+1] = ktableref[m+1]* ktableref2[m];

fp_report << "\tThis is the k-value encoding table :\n\t\t";

for (int m=0; m < M+1; m++)

fp_report << ktableref2[m] << " ";

fp_report << endl;

// Load superinfection data from the necessary files

if (super_filename != "") {

super21_1 = new vector <float >[COI];

super21_2 = new vector <float >[COI];

ifstream fp_in_super(super_filename , ios::in);

for (int i = 0; i < COI; i++)

{

for(int j = 0; j < COI; j++)

{

fp_in_super >> in_value;

super21_1[i]. push_back(in_value );

}

}

for (int i = 0; i < COI; i++)

{

for(int j = 0; j < COI; j++)

{

fp_in_super >> in_value;

super21_2[i]. push_back(in_value );

}

}

fp_in_super.close ();

}

return Py_BuildValue ("");

}

// **************************************************************

// Loads the Survivability Data

static PyObject*

load_survivability_data(PyObject *self , PyObject *args)

{

const char* filename;

if (! PyArg_ParseTuple(args , "s",&filename )) return NULL;

fp_report << "\ tLoading survivability data from "

<< filename << ".\n";

ifstream fp_in(filename , ios::in);

survivability = new vector <float >[M];

float in_value;

for (int m = 0; m < M; m++)

{

for(int k = 0; k < COI; k++)
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{

fp_in >> in_value;

survivability[m]. push_back(in_value );

}

}

fp_in.close ();

return Py_BuildValue ("");

}

// **************************************************************

// Receives model parameters from Python script

static PyObject*

model_parameters(PyObject *self , PyObject *args , PyObject *keywds)

{

float temp_B = B;

int temp_N = N;

float temp_phi_cutoff = phi_cutoff;

float temp_phi_power = phi_power;

float temp_disease_death_rate = disease_death_rate;

float temp_natural_death_rate = natural_death_rate;

int temp_SUPER = SUPER;

int temp_print_rates = print_rates;

static char *kwlist [] = {"B","N"," phi_cutoff ","phi_power",

"disease_death_rate", "natural_death_rate",

"super_infection "," print_rates",NULL};

if (! PyArg_ParseTupleAndKeywords(args , keywds , "| fiffffii", kwlist ,

&temp_B , &temp_N , &temp_phi_cutoff , &temp_phi_power ,

&temp_disease_death_rate , &temp_natural_death_rate ,

&temp_SUPER ,& temp_print_rates ))

return NULL;

if (temp_B != -1) {

B = temp_B;

fp_report << "\tB\t\t\t=\t" << B << ".\n";

}

if (temp_N != -1) {

N = temp_N;

fp_report << "\tN\t\t\t=\t" << N << ".\n";

}

if (temp_phi_cutoff != -1) {

phi_cutoff = temp_phi_cutoff;

fp_report << "\ tphi_cutoff\t\t=\t" << phi_cutoff << ".\n";

}

if (temp_phi_power != -1) {

phi_power = temp_phi_power;

fp_report << "\ tphi_power\t\t=\t" << phi_power << ".\n";

}

if (temp_disease_death_rate != -1) {

disease_death_rate = temp_disease_death_rate;

fp_report << "\ tdisease_death_rate\t=\t"

<< disease_death_rate << ".\n";

}

if (temp_natural_death_rate != -1) {

natural_death_rate = temp_natural_death_rate;

fp_report << "\ tnatural_death_rate\t=\t"

<< natural_death_rate << ".\n";

}

if (temp_SUPER != -1) {
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SUPER = temp_SUPER;

fp_report << "\ tsuper\t\t\t=\t" << SUPER << ".\n";

}

if (temp_print_rates != print_rates) {

print_rates = temp_print_rates;

fp_report << "\ tprint_rates\t=\t" << print_rates << ".\n";

}

Py_INCREF(Py_None );

return Py_None;

}

// **************************************************************

// Receives output file names from python script

static PyObject*

out_names(PyObject *self , PyObject *args , PyObject *keywds)

{

const char* pops_filename = "";

const char* report_filename = "";

static char *kwlist [] = {"pops","report",NULL};

if (! PyArg_ParseTupleAndKeywords(args , keywds ,"|ss", kwlist ,

&pops_filename , &report_filename )) return NULL;

fp_pop.open(pops_filename ,ios::app);

fp_report.open(report_filename , ios::app);

return Py_BuildValue ("");

}

// **************************************************************

// Generates a table of contents array whose indices are

// assigned 1 for valid staes , and 2 for invalid states

// according to the binary encoding scheme

// A second array lists the number of coinfections for those

// states which correspond to coinfections

void generate_toc ()

{

toc = new int[I];

int flag;

for (int i=0; i < I; i++) {

flag = 1;

for (int j=0; j < M; j++) {

if ( (((i>>(M+j))%2)&((i>>j)%2)) ) {

flag = 0;

}

}

if (flag) {

toc[i] = 1;

} else { toc[i] = 0; }

}

fp_report << "\ tFinished generating the table of "

<< "contents , given below.\n\t\t";

for (int i=0; i < I; i++)

fp_report << toc[i] << " ";

fp_report << "\n";
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fp_report << "\ tFinished generating the table of "

<< " coinfections , given below.\n\t\t";

toc_coinfect = new int[I];

int sum;

for (int w=0; w < I; w++) {

if (toc[w] == 0) {

toc_coinfect[w] = -1;

fp_report << toc_coinfect[w] << " ";

}

else if ((w%(int)pow(2,M)) != 0) {

sum = 0;

for (int x=0; x < M; x++) {

if (((w>>x)%2)==1) sum++;

}

if (sum == 1) toc_coinfect[w] = 0;

else toc_coinfect[w] = w;

fp_report << toc_coinfect[w] << " ";

}

else {

toc_coinfect[w] = 0;

fp_report << toc_coinfect[w] << " ";

}

}

fp_report << "\n";

return;

}

// **************************************************************

// Sets all population counters to zero ,

// except for the naive class

static PyObject*

initialize_counters(PyObject *self , PyObject *args)

{

if (! PyArg_ParseTuple(args , "")) return NULL;

states = new int* [I];

for (int i=0; i < I; i++)

states[i] = new int [N];

for (int i=0; i < I; i++) {

for (int k=0; k < K; k++) {

pop[i][k] = 0;

}

}

for (int i=0; i < I; i++) {

popC[i] = 0;

}

for (int i=0; i < I; i++) {

for (int d = 0; d < N; d++) {

states[i][d] = 0;

}

}

pool = new host[N];

for (int i=0; i < N; i++) {

pool[i].index = i;

}

for (int i=0; i < N; i++) {

states [0][i] = 1;
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}

fp_report << "\ tCreated new counters and initialized "

<< N << " hosts.\n";

update_master ();

t = 0;

day = 1;

return Py_BuildValue ("");

}

// **************************************************************

// Resets counters to begin a new simulation

static PyObject*

reset_counters(PyObject *self , PyObject *args)

{

if (! PyArg_ParseTuple(args , "")) return NULL;

delete [] states;

delete [] tableP;

delete [] tableM;

delete [] tableRi;

delete [] tableRj;

delete [] tableRk;

delete [] tableRl;

delete [] tableRh;

fp_pop.close ();

fp_report.close ();

return Py_BuildValue ("");

}

// **************************************************************

// Adds a number of infected hosts with a particular strain

// at time zero given by the python script

static PyObject*

seed_infection(PyObject *self , PyObject *args)

{

int new_infection;

int targets;

if (! PyArg_ParseTuple(args , "ii", &new_infection , &targets ))

return NULL;

int temp = N - popC [0];

for (int i = temp; i < (targets+temp); i++)

pool[i]. infect(new_infection );

population_output (1);

fp_report << "\ tInfected " << targets

<< " hosts with strain set "

<< new_infection << ".\n";

return Py_BuildValue ("");

}

// **************************************************************

// f-Function defined by this model

float f_function(float load)

{
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float ans;

ans = pow(pow(10,load),phi_power) /

(pow(pow(10,load),phi_power) + pow(phi_cutoff ,phi_power ));

return ans;

}

// **************************************************************

// PHI Function defined by this model

float phi(int x, int z, int w)

{

// The following control statements include the conditions which a

// are specific to our implementation of the model

// they provide an ad hoc method for implementing

// the infection window and the attenuated strains

// however , it is recommended that this code be updated

// for more general specifications on the immunity window

// and parasite densities for superinfection

float result = 1;

if ((z==1) && (( ltable [0] == COI) && (ltable [1] != COI))

&& (ltable [1] > 11) && (ltable [1] <= 49)) {

return 0.0;

}

else if ((z==2) && (( ltable [1] == COI) && (ltable [0] != COI))

&& (ltable [0] > 11) && (ltable [0] <= 49)) {

return 0.0;

}

else if (((x%Q)==3) && (ktable [1] - ktable [0] > 0)

&& (ktable [1] - ktable [0] <= 11) && (SUPER == 1)) {

if (((z> >0)%2)) {

result *=

f_function(super21_1[ktable [1]- ktable [0]][ ktable [0]]);

}

if (((z> >1)%2)) {

result *=

f_function(super21_2[ktable [1]- ktable [0]][ ktable [1]]);

}

if (((x> >0)%2) && !((z> >0)%2) && !((w> >0)%2)) {

result *=

(1- f_function(super21_1[ktable [1]- ktable [0]][ ktable [0]]));

}

if (((x> >1)%2) && !((z> >1)%2) && !((w> >1)%2)) {

result *=

(1- f_function(super21_2[ktable [1]- ktable [0]][ ktable [1]]));

}

}

else if (((x%Q)==3) && (ktable [0] - ktable [1] > 0)

&& (ktable [0] - ktable [1] <= 11) && (SUPER == 1)) {

for (int i=0; i < M; i++) {

if (((z>>i)%2) && (ktable[i] != COI)) {

result *=

f_function(data[(x-1)*M+i][ ktable[i]]);

}

}

for (int i=0; i < M; i++) {

if (((x>>i)%2) && !((z>>i)%2) && !((w>>i)%2)

&& (ktable[i] != COI)) {

result *=

75



(1- f_function(data[(x-1)*M+i][ ktable[i]]));

}

}

}

else if (((x%Q)==3) && (( ktable [0] - ktable [1] > 49)

|| (ktable [1] - ktable [0] > 49)) && (SUPER == 1)) {

for (int i=0; i < M; i++) {

if (((z>>i)%2) && (ktable[i] != COI)) {

result *=

f_function(data[(x-1)*M+i][ ktable[i]]);

}

}

for (int i=0; i < M; i++) {

if (((x>>i)%2) && !((z>>i)%2) && !((w>>i)%2)

&& (ktable[i] != COI)) {

result *=

(1- f_function(data[(x-1)*M+i][ ktable[i]]));

}

}

}

else if (((x%Q)!=3) || (((x%Q)==3) && (ktable [0]== ktable [1]))) {

for (int i=0; i < M; i++) {

if (((z>>i)%2) && (ktable[i] != COI)) {

result *=

f_function(data[(x-1)*M+i][ ktable[i]]);

}

}

for (int i=0; i < M; i++) {

if (((x>>i)%2) && !((z>>i)%2) && !((w>>i)%2)

&& (ktable[i] != COI)) {

result *=

(1- f_function(data[(x-1)*M+i][ ktable[i]]));

}

}

}

else {

return 0.0;

}

return result;

}

// **************************************************************

// Updates a global table which gives the decoded number of

// days for each strain , from a single integer

void update_ktable(int k)

{

int temp;

for(int m=0; m < M; m++) {

k = k/ktableref[m];

temp = k % ktableref[m+1];

ktable[m] = temp;

k -= temp;

}

return;

}

void update_ltable(int l)

{
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int temp;

for(int m=0; m < M; m++) {

l = l/ktableref[m];

temp = l % ktableref[m+1];

ltable[m] = temp;

l -= temp;

}

return;

}

// **************************************************************

// Generates the master probability table

static PyObject*

generate_probabilities(PyObject *self , PyObject *args)

{

if (! PyArg_ParseTuple(args , "")) return NULL;

generate_toc ();

int pass;

int could_pass;

int lkvalid;

A = 0;

for(int i=0; i < I; i++) {

for(int j=0; j < J; j++) {

could_pass = (((i%Q)^(j%Q))^(j%Q))&(((i%Q)^(j%Q)));

pass = ((( could_pass )^(j>>M))^(j>>M))& ((( could_pass )^(j>>M)));

if (SUPER ==0) {

if ((j%Q) != 0) pass = 0; }

if ((pass != 0) && ((toc[i]*toc[j])%2) ) {

for (int h=1; h <= H; h++) {

if ((pass&h) == h) {

for(int k=0; k < (int)pow ((COI+1),M); k++) {

for(int l=0; l < (int)pow((COI+1),M); l++) {

update_ktable(k);

update_ltable(l);

lkvalid = 1;

for (int m=0; m < M; m++) {

if (( ktable[m] == COI) && ((((i%Q)>>m)%2)==1))

lkvalid = 0;

if (( ktable[m] != COI) && ((((i%Q)>>m)%2)==0))

lkvalid = 0;

if (( ltable[m] == COI) && ((((j%Q)>>m)%2)==1))

lkvalid = 0;

if (( ltable[m] != COI) && ((((j%Q)>>m)%2)==0))

lkvalid = 0;

if (( ltable[m] != COI) && (((pass >>m)%2)==1))

lkvalid = 0;

}

if (((phi(i%Q,h,j>>M)) != 0) && (lkvalid == 1)) {

A++;

}}}}}}}}

tableP = new float [A];

tableM = new float [A];

tableRi = new int [A];

tableRj = new int [A];

tableRk = new int [A];

tableRl = new int [A];

tableRh = new int [A];

A=0;
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// Having counted the number of possible reactions ,

// Calculate their raw propensities in the following loops

// and add them to the tables

for(int i=0; i < I; i++) {

for(int j=0; j < J; j++) {

could_pass = (((i%Q)^(j%Q))^(j%Q))&(((i%Q)^(j%Q)));

pass = ((( could_pass )^(j>>M))^(j>>M))& ((( could_pass )^(j>>M)));

if (SUPER ==0) {

if ((j%Q) != 0) pass = 0; }

if ((pass != 0) && ((toc[i]*toc[j])%2) ) {

for (int h=1; h <= H; h++) {

if ((pass&h) == h) {

for(int k=0; k < (int)pow ((COI+1),M); k++) {

for(int l=0; l < (int)pow((COI+1),M); l++) {

update_ktable(k);

update_ltable(l);

lkvalid = 1;

for (int m=0; m < M; m++) {

if (( ktable[m] == COI) && ((((i%Q)>>m)%2)==1))

lkvalid = 0;

if (( ktable[m] != COI) && ((((i%Q)>>m)%2)==0))

lkvalid = 0;

if (( ltable[m] == COI) && ((((j%Q)>>m)%2)==1))

lkvalid = 0;

if (( ltable[m] != COI) && ((((j%Q)>>m)%2)==0))

lkvalid = 0;

if (( ltable[m] != COI) && (((pass >>m)%2)==1))

lkvalid = 0;

}

if (((phi(i%Q,h,j>>M)) != 0) && (lkvalid == 1)) {

tableP[A] = B*phi(i%Q,h,j>>M);

tableRk[A] = k;

tableRh[A] = h;

tableRj[A] = j;

tableRi[A] = i;

tableRl[A] = l;

A++;

}

}}}}}}}

fp_report << "\ tFinished building probabilities table .\n";

return Py_BuildValue ("");

}

B.4 The De�nition of the Host Class: �host.h�

class host

{

public:

int* age;

// an array which holds the ages of each infection

int all_age;

// a number which encodes infection ages for all strains

int infection;
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// binary number where 1 represents infection of the

// strain corresponding to that binary digit

int history;

// binary number representing the strains which

// the host has recovered from

int index;

// a unique identifier for the host

public:

void encode_age ();

host ();

void infect(int new_infection );

void recover(int which_strain );

void increment ();

void print ();

void death ();

};

void host:: encode_age ()

{

// Updates all_age whenever the individual ages of infection change

all_age = 0;

for (int m=0; m < M; m++)

all_age += age[m]*( int)pow(COI+1,m);

}

host::host()

{

// Initializes the host and registers it in the pop

// and popC counters

age = new int [M];

for (int i=0; i < M; i++) {

age[i] = COI;

}

history = 0;

infection = 0;

popC [(( history <<M)+( infection ))]++;

encode_age ();

pop [(( history <<M)+( infection ))][ all_age ]++;

}

void host:: infect(int new_infection)

{

// Gives the host a new infection , updates its ages of infection

// and registers these changes in the overall population counters

if (print_rates == 1)

rates[( new_infection -1)+H*(( history <<M)+( infection ))]++;

states [(( history <<M)+( infection ))][ index] = 0;

pop [(( history <<M)+( infection ))][ all_age]--;

popC [(( history <<M)+( infection ))]--;

infection = infection | new_infection;

for (int s=0; s < M; s++) {

if (( new_infection >>s)%2 == 1)

age[s] = 0;

}

encode_age ();

states [(( history <<M)+( infection ))][ index] = 1;

pop [(( history <<M)+( infection ))][ all_age ]++;
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popC [(( history <<M)+( infection ))]++;

}

void host:: increment ()

{

// Increments the host to the next day

// and also kills the host according to background noise

// if the host has no infection , or kills the host with

// probability according to the disease survivability

// if the host has an infection

float random = (float)rand ()/ RAND_MAX;

int recover_flag = 0;

if (( infection == 0) && (random <= natural_death_rate )) {

death ();

return;

}

if (random > (survivability [0][ age [0]] <

survivability [0][ age [1]] ?

survivability [0][ age [1]] : survivability [0][ age [0]])) {

death ();

return;

}

for (int s=0; s < M; s++) {

if (age[s] == COI -1) {

recover_flag = recover_flag | (1<<s);

}

}

if (recover_flag != 0) {

recover(recover_flag );

return;

}

pop [(( history <<M)+( infection ))][ all_age]--;

for (int s=0; s < M; s++) {

if (age[s] < COI)

age[s]++;

}

encode_age ();

pop [(( history <<M)+( infection ))][ all_age ]++;

}

void host:: recover(int which_strains)

{

// Changes the host 's state and updates counters

// whenever the host recovers from a particular strain

states [(( history <<M)+( infection ))][ index] = 0;

popC [(( history <<M)+( infection ))]--;

pop [(( history <<M)+( infection ))][ all_age]--;

history = (( which_strains )|( history ));

infection = infection^which_strains;

for (int s=0; s < M; s++) {

if ((( which_strains >>s)%2) == 1) {

age[s] = COI;

}

else if (((( infection >>s)%2) == 1) && (age[s] < COI)) {

age[s]++;

}

}

encode_age ();
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states [(( history <<M)+( infection ))][ index] = 1;

popC [(( history <<M)+( infection ))]++;

pop [(( history <<M)+( infection ))][ all_age ]++;

}

void host:: death()

{

// Changes the host 's state and updates counters

// whenever the host dies , and is recycled into the naive state

pop [(( history <<M)+( infection ))][ all_age]--;

for (int s=0; s < M; s++) {

age[s] = COI;

}

encode_age ();

popC [(( history <<M)+( infection ))]--;

states [(( history <<M)+( infection ))][ index] = 0;

infection = 0;

history = 0;

states [(( history <<M)+( infection ))][ index] = 1;

popC [(( history <<M)+( infection ))]++;

pop [(( history <<M)+( infection ))][ all_age ]++;

}

B.5 The Simulation Functions: �step.h�

void step ();

float calc_a0 ();

float gen_tau ();

float gen_tau_BD(float f);

void increment_all ();

void update_master ();

void which_reaction ();

void random_infect(int i, int k, int j, int h);

void random_infect_hybrid_specific(int i, int k, int j, int h, int l);

// **************************************************************

// Explicit Method

// one step is equivalent to one reaction (slow)

static PyObject*

step(PyObject *self , PyObject *args)

{

if (! PyArg_ParseTuple(args , "")) return NULL;

update_master ();

a0 = calc_a0 ();

time_step = gen_tau ();

if ((a0 == 0) || (t+time_step >= day)) {

population_output (1);

increment_all ();

t = day;

day ++;

}
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else {

t += time_step;

which_reaction ();

cout << t << "\n";

}

return Py_BuildValue ("");

}

// **************************************************************

// Binomial tau -leap method

// scales the time -step by a coarse -graining factor

static PyObject*

step_BD(PyObject *self , PyObject *args)

{

float coarse;

if (! PyArg_ParseTuple(args , "f", &coarse )) return NULL;

int i;

int j;

int h;

int k;

int kmax;

int ksample;

float p;

update_master ();

a0 = calc_a0 ();

time_step = gen_tau_BD(coarse );

if ((a0 == 0) || (t+time_step >= day)) {

population_output (1);

increment_all ();

t = day;

day ++;

cout << "\n" << t << "\n";

}

else {

for (int a=A-1; a >= 0; a--) {

kmax = pop[tableRj[a]][ tableRl[a]];

p = tableM[a]* time_step/kmax;

ksample = gsl_ran_binomial(random_number , p, kmax);

while (ksample --) {

random_infect_hybrid_specific(tableRi[a],

tableRk[a],tableRj[a],tableRh[a],tableRl[a]);

}

}

t += time_step;

cout << t << " ";

}

return Py_BuildValue ("");

}

// **************************************************************

// Calculate the Propensity Function

float calc_a0 ()

{

double result = 0;

for (int a=0; a < A; a++) {
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result += tableM[a];

}

return result;

}

// **************************************************************

// Calculate the Time -Step for the Explicit Method

float gen_tau ()

{

float tau;

float r1 = (float )(( rand ()+1.0)/( RAND_MAX +1.0));

tau = (1/a0)*log(1/r1);

return tau;

}

// **************************************************************

// Calculate the Time -Step for the Tau -Leaping Method

float gen_tau_BD(float f)

{

float tau;

tau = f / a0;

return tau;

}

// **************************************************************

// Increment each Host 's Infection clock by one day

// this function is called whenever the current time + time

// until the next reaction exceeds the next integer day

void increment_all ()

{

for (int i = 0; i < N; i++) {

pool[i]. increment ();

}

}

// **************************************************************

// Update the Master Table of Propensities

// Multiplies the probability of each reaction by the product of

// the number of each reactant:

// one infecting host and one receiving host

void update_master ()

{

for (int a=0; a < A; a++) {

tableM[a] = tableP[a]*pop[tableRj[a]][ tableRl[a]]

*pop[tableRi[a]][ tableRk[a]];

}

return;

}

// **************************************************************

// Determine the Next Reaction

void which_reaction ()

{

float r2 = (float)rand ()/ RAND_MAX;

float running_sum = 0;
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int i;

int j;

int h;

int k;

for (int a=0; a < A; a++) {

running_sum += tableM[a];

if (running_sum > a0*r2) {

random_infect_hybrid(tableRi[a],

tableRk[a],tableRj[a],tableRh[a]);

return;

}

}

}

// **************************************************************

// Determine the Next Reaction (explicit method)

void random_infect(int i, int k, int j, int h)

{

int r = (rand() % popC[j]);

for (int n = 0; n < N; n++) {

if (states[j][n] == 1) {

if (r == 0) {

pool[n]. infect(h);

return;

}

r--;

}

}

}

// **************************************************************

// Randomly infect a new host of a particular type

// which is specified by k (its state) and

// l (the number which encodes both its ages of infection)

// where h specifies which strains are being transmitted

void random_infect_hybrid_specific(int i, int k, int j, int h, int l)

{

int r;

if (!(pop[j][l] < N/1000)) {

while (1) {

r = (rand() % N);

if ((pool[r]. all_age == l) &&

((( pool[r].history <<M)+( pool[r]. infection )) == j)) {

pool[r]. infect(h);

return;

}

}

}

else {

r = (rand() % pop[j][l]);

for (int n = 0; n < N; n++) {

if ((pool[n]. all_age == l) &&

((( pool[n].history <<M)+( pool[n]. infection )) == j)) {

if (r == 0) {

pool[n]. infect(h);

return;

}

r--;
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}

}

}

}

B.6 The Output Code: �output.h�

void population_output(int increment)

{

int sum;

if(( step_num%increment) == 0) {

fp_pop << t << "\t";

for (int i=0; i < 16; i++)

{

if (((i%4)==0) && (toc[i]==1))

{

fp_pop << popC[i] << "\t";

}

else if (toc_coinfect[i] == 0)

{

if ((i%4) == 1)

{

fp_pop << pop[i][0+ COI*(COI +1)] << "\t";

}

if ((i%4) == 2)

{

fp_pop << pop[i][COI +0*( COI +1)] << "\t";

}

else if (toc_coinfect[i] != -1 )

{

sum = 0;

for (int k=0; k < (COI +1)*( COI +1); k++)

{

if ((k%(COI+1) == 0) || (floor(k/(COI +1)) == 0))

sum += pop[i][k];

}

fp_pop << sum << "\t";

}

}

fp_pop << endl;

if (print_rates == 1) {

for (int j=0; j < J; j++) {

if (toc[j] == 1) {

fp_report << "";

for (int h = 0; h < H; h++) {

fp_report << rates[h+H*j] << ",";

}

fp_report << "\t";

}

}

fp_report << endl;

for (int i=0; i < H*L; i++)

rates[i] = 0;
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}

}

}
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